A class of orthogonal latin square graphs

An orthogonal latin square graph is a graph whose vertices are latin squares of the same order, adjacency being synonymous with orthogonality. We are interested in orthogonal latin square graphs in which each square is orthogonal to the Cayley table M of a group G and is obtained from M by permuting columns. These permutations, regarded as permutations of G, are orthomorphisms of G and the graphs so obtained are orthomorphism graphs. We will discuss the main problems in the study of orthomorphism graphs and survey bounds on the clique numbers of these graphs. We will also present several problems.

[1]  Cheryl E. Praeger,et al.  Low rank representations and graphs for sporadic groups , 1996 .

[2]  C. Colbourn,et al.  Handbook of Combinatorial Designs , 2006 .

[3]  Dale Peterson,et al.  Gridline graphs: a review in two dimensions and an extension to higher dimensions , 2003, Discret. Appl. Math..

[4]  Anthony B. Evans On orthogonal orthomorphisms of cyclic and non-abelian groups , 2002, Discret. Math..

[5]  Anthony B. Evans The admissibility of sporadic simple groups , 2009 .

[6]  L. Paige,et al.  Complete mappings of finite groups. , 1951 .

[7]  Arne Winterhof On the non-existence of generalized Hadamard matrices , 2000 .

[8]  Paul Erdös,et al.  Representations of graphs and orthogonal latin square graphs , 1989, J. Graph Theory.

[9]  Andrew Bowler,et al.  Orthomorphisms of dihedral groups , 1997, Discret. Math..

[10]  H. J. Ryser,et al.  The Nonexistence of Certain Finite Projective Planes , 1949, Canadian Journal of Mathematics.

[11]  Dieter Jungnickel,et al.  On difference matrices and regular latin squares , 1980 .

[12]  Anthony B. Evans The existence of complete mappings of SL(2, q), q=3 modulo 4 , 2005, Finite Fields Their Appl..

[13]  The Existence of Complete Mappings of SL(2, q), q≡1 Modulo 4 , 2001 .

[14]  Kathleen A. S. Quinn Difference Matrices and Orthomorphisms over Non-Abelian Groups , 1999, Ars Comb..

[15]  Anthony B. Evans The Existence of Strong Complete Mappings , 2012, Electron. J. Comb..

[16]  L. J. Paige A note on finite abelian groups , 1947 .

[17]  Concerning eight mutually orthogonal latin squares , 2007 .

[18]  Dan Segal,et al.  Finite Group Theory , 2003 .

[19]  Geoffrey R. Robinson,et al.  Linear Groups , 2022 .

[20]  Garth Isaak,et al.  Representations of graphs modulo n , 2000, Discret. Math..

[21]  Anthony B. Evans On orthogonal orthomorphisms of cyclic and non-abelian groups. II , 2007 .

[22]  D. Frank Hsu,et al.  On the hardness of counting problems of complete mappings , 2004, Discret. Math..

[23]  R. Julian R. Abel,et al.  Some difference matrix constructions and an almost completion for the existence of triplewhist tournaments TWh(upsilon) , 2005, Eur. J. Comb..

[24]  R. A. Bailey,et al.  Translation nets and fixed-point-free group automorphisms , 1990, J. Comb. Theory A.

[25]  R. Julian R. Abel,et al.  Some new MOLS of order 2np for p a prime power , 1994, Australas. J Comb..

[26]  Stewart Wilcox,et al.  Reduction of the Hall–Paige conjecture to sporadic simple groups , 2009, 1010.1323.

[27]  N. Gavioli,et al.  On the Admissibility of Some Linear and Projective Groups in Odd Characteristic , 1997 .

[28]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[29]  Warwick de Launey On the non-existence of generalised Hadamard matrices , 1984 .

[30]  Gennian Ge,et al.  On (g, 4;1)-difference matrices , 2005, Discret. Math..

[31]  Anthony B. Evans Maximal Sets of Mutually Orthogonal Latin Squares. I , 1991, Eur. J. Comb..

[32]  Felix Lazebnik,et al.  Orthomorphisms and the construction of projective planes , 2003, Math. Comput..

[33]  H. F. Macneish,et al.  Euler Squares , 2010 .

[34]  N. S. Mendelsohn,et al.  Orthogonal Latin Charles C . Lindner Square Graphs AUBURN , 2006 .

[35]  D. Jungnickel Partial spreads over Zq , 1989 .

[36]  Reza Akhtar,et al.  Representation Numbers of Stars , 2010, Integers.

[37]  Anthony B. Evans Mutually orthogonal Latin squares based on general linear groups , 2014, Des. Codes Cryptogr..

[38]  Walter D. Wallis,et al.  Maximal sets of mutually orthogonal Latin squares , 1999, Discret. Math..

[39]  Clement Lam,et al.  Algebraic, Extremal and Metric Combinatorics, 1986: A Computer Search for a Projective Plane of Order 10 , 1988 .

[40]  R. Julian R. Abel,et al.  New Z-cyclic triplewhist frames and triplewhist tournament designs , 2006, Discret. Appl. Math..

[41]  C. Colbourn,et al.  Concerning seven and eight mutually orthogonal Latin squares , 2004 .

[42]  Rudolf Lide,et al.  Finite fields , 1983 .

[43]  Mieczyslaw Wojtas Five mutually orthogonal Latin squares of order 35 , 1996 .

[44]  Brendan D. McKay,et al.  The number of transversals in a Latin square , 2006, Des. Codes Cryptogr..

[45]  R. Julian R. Abel,et al.  The existence of 2-SOLSSOMs , 2003 .

[46]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[47]  Mieczyslaw Wojtas Three new constructions of mutually orthogonal Latin squares , 2000 .

[48]  Anthony B. Evans The existence of strong complete mappings of finite groups: A survey , 2013, Discret. Math..

[49]  Ian M. Wanless,et al.  Permutation polynomials and orthomorphism polynomials of degree six , 2013, Finite Fields Their Appl..

[50]  Complete mappings in some linear and projective groups , 1993 .

[51]  Roger M. Whitaker,et al.  Enumeration of transversals in the Cayley tables of the non-cyclic groups of order 8 , 1999 .