Exact Categories

We survey the basics of homological algebra in exact categories in the sense of Quillen. All diagram lemmas are proved directly from the axioms, notably the five lemma, the 3× 3lemma and the snake lemma. We briefly discuss exact functors, idempotent completion and weak idempotent completeness. We then show that it is possible to construct the derived category of an exact category without any embedding into abelian categories and we sketch Deligne’s approach to derived functors. The construction of classical derived functors with values in an abelian category painlessly translates to exact categories, i.e., we give proofs of the comparison theorem for projective resolutions and the horseshoe lemma. After discussing some examples we elaborate on Thomason’s proof of the GabrielQuillen embedding theorem in an appendix.

[1]  A. Kechris Classical descriptive set theory , 1987 .

[2]  B. Mitchell,et al.  Theory of categories , 1965 .

[3]  L. Illusie Séminaire de Géométrie Algébrique du Bois-Marie 1965–66 SGA 5 , 1977 .

[4]  Z. EidgenTechnischeHochschule On the Algebraic Foundation of Bounded Cohomology , 2008 .

[5]  V. Srinivas Algebraic K-Theory , 1990 .

[6]  W. Rump A counterexample to Raikov's conjecture , 2008 .

[7]  D. Puppe,et al.  Homologie nicht-additiver Funktoren. Anwendungen , 1961 .

[8]  G. Mostow,et al.  Cohomology of Lie groups , 1962 .

[9]  P. Gabriel,et al.  Representations of Finite-Dimensional Algebras , 1992 .

[10]  M. C. R. Butler,et al.  Classes of extensions and resolutions , 1961, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[11]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[12]  A. Borel,et al.  Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups , 1999 .

[13]  S. I. Gelʹfand,et al.  Methods of Homological Algebra , 1996 .

[14]  B. Eckmann,et al.  Seminar on triples and categorical homology theory : ETH, 1966-67 , 1969 .

[15]  M. Karoubi Algèbres de Clifford et $K$-théorie , 1968 .

[16]  S. Lubkin Imbedding of abelian categories , 1960 .

[17]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[18]  Peter Hilton,et al.  A Course in Homological Algebra , 1972 .

[19]  S MacLane Applications of categorical algebra , 1985 .

[20]  米田 信夫,et al.  On ext and exact sequences , 1961 .

[21]  P. Dräxler,et al.  Exact categories and vector space categories , 1999 .

[22]  M. Kuenzer Heller triangulated categories , 2005, math/0508565.

[23]  W. Rump Almost abelian categories , 2001 .

[24]  B. Keller Chain complexes and stable categories , 1990 .

[25]  Jean-Pierre Schneiders Quasi-Abelian categories and sheaves , 1999 .

[26]  B. Mitchell The Full Imbedding Theorem , 1964 .

[27]  J. Verdier,et al.  Des catégories dérivées des catégories abéliennes , 1996 .

[28]  K. Bernhard DERIVED CATEGORIES AND UNIVERSAL PROBLEMS , 1991 .

[29]  J. A. López-Ramos,et al.  Relative Homological Algebra , 2000 .

[30]  A. Heller Homological Algebra in Abellian Categories , 1958 .

[31]  M. Schlichting Hermitian K -theory of exact categories , 2010 .

[32]  G. M. Kelly Monomorphisms, Epimorphisms, and Pull-Backs , 1969, Journal of the Australian Mathematical Society.

[33]  A. Schofield TRIANGULATED CATEGORIES IN THE REPRESENTATION THEORY OF FINITE DIMENSIONAL ALGEBRAS (London Mathematical Society Lecture Note Series 119) , 1990 .

[34]  G. Laumon Sur la catégorie dérivées des D-modules filtrés , 1983 .

[35]  E. Groves A Dissertation ON , 1928 .

[36]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[37]  Homological algebra with locally compact abelian groups , 2005, math/0510345.

[38]  Fabienne Prosmans Derived categories for functional analysis , 2000 .

[39]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[40]  A. Neeman The derived category of an exact category , 1990 .

[41]  A. Heller The loop-space functor in homological algebra , 1960 .

[42]  H. Brinkmann,et al.  Abelsche und exakte Kategorien, Korrespondenzen , 1969 .

[43]  Alexander Grothendieck,et al.  Sur quelques points d'algèbre homologique, I , 1957 .

[44]  C. Weibel,et al.  AN INTRODUCTION TO HOMOLOGICAL ALGEBRA , 1996 .

[45]  Marta Bunge,et al.  Categories of set valued functors , 1966 .

[46]  A. Helemskiĭ The Homology of Banach and Topological Algebras , 1989 .

[47]  A. Heller,et al.  Splitting homotopy idempotents II , 1993 .

[48]  Pu Zhang,et al.  Triangulated Categories , 2021, Homological Theory of Representations.

[49]  P. Freyd Abelian categories : an introduction to the theory of functors , 1965 .

[50]  David A. Buchsbaumi A NOTE ON HOMOLOGY IN CATEGORIES , 1959 .

[51]  P. Gabriel,et al.  Des catégories abéliennes , 1962 .

[52]  P. Freyd Representations in Abelian Categories , 1966 .

[53]  R. Thomason,et al.  Higher Algebraic K-Theory of Schemes and of Derived Categories , 1990 .

[54]  柏原 正樹,et al.  Categories and Sheaves , 2005 .

[55]  Bernhard Keller,et al.  Derived Categories and Their Uses , 1996 .

[56]  Armand Borel,et al.  Algebraic D-modules , 1987 .

[57]  J. Isbell,et al.  Reports of the Midwest Category Seminar I , 1967 .

[58]  Julia Collins,et al.  HOMOLOGICAL ALGEBRA , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[59]  Friedrich Ulmer Locally α-presentable and locally α-generated categories , 1971 .

[60]  P. Gabriel,et al.  Representations of Algebras , 2018, A Tour of Representation Theory.