Performing differential operation with a silver dendritic metasurface at visible wavelengths.

We design a reflective silver dendritic metasurface that can perform differential operation at visible wavelengths. The metasurface consists of an upper layer of silver dendritic structures, a silica spacer, and a lower layer of silver film. Simulation results show that the metasurface can realize differential operation in red, yellow, and green bands. Such a functionality is readily extended to infrared and communication wavelengths. The metasurface samples that respond to green and red bands are prepared by using the electrochemical deposition method, and their differential operation properties are proved through tests. Silver dendritic metasurfaces that can conduct the mathematical operation in visible light pave the way for realizing miniaturized, integratable all-optical information processing systems. Their differentiation functionality, which is used for real-time ultra-fast edge detection, image contrast enhancement, hidden object detection, and other practical applications, has a great development potential.

[1]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[2]  E. Hasman,et al.  Spin-Optical Metamaterial Route to Spin-Controlled Photonics , 2013, Science.

[3]  Ata Chizari,et al.  Analog optical computing based on a dielectric meta-reflect array. , 2016, Optics letters.

[4]  Xiaopeng Zhao Bottom-up fabrication methods of optical metamaterials , 2012 .

[5]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[6]  Weiren Zhu,et al.  Multiple Pass‐Band Optical Left‐Handed Metamaterials Based on Random Dendritic Cells , 2008 .

[7]  Federico Capasso,et al.  Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  T. I. Yuk,et al.  Linear-to-Circular Polarization Conversion Using Metasurface , 2013, IEEE Transactions on Antennas and Propagation.

[9]  Y. Cheng,et al.  Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. , 2015, Nature materials.

[10]  Edgar Palacios,et al.  Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. , 2015, Nano letters.

[11]  Vincenzo Galdi,et al.  ‘Computing metasurfaces’ to perform mathematical operations , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[12]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[13]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[14]  Derek de Solla Price A History of Calculating Machines , 1984, IEEE Micro.

[15]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[16]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[17]  G. Minatti,et al.  A Circularly-Polarized Isoflux Antenna Based on Anisotropic Metasurface , 2012, IEEE Transactions on Antennas and Propagation.

[18]  Andrea Alù,et al.  Ultrathin Pancharatnam–Berry Metasurface with Maximal Cross‐Polarization Efficiency , 2015, Advanced materials.

[19]  D. Miller,et al.  Are optical transistors the logical next step , 2010 .

[20]  Ebrahim Karimi,et al.  Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface , 2014, Light: Science & Applications.

[21]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[22]  H. Mosallaei,et al.  Birefringent reflectarray metasurface for beam engineering in infrared. , 2013, Optics letters.

[23]  C. Luo,et al.  Slowing down light using a dendritic cell cluster metasurface waveguide , 2016, Scientific Reports.

[24]  Yang Yang,et al.  Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials. , 2006, Optics express.

[25]  Ann Roberts,et al.  Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. , 2010, Nano letters.

[26]  A. Ben Clymer,et al.  The mechanical analog computers of Hannibal Ford and William Newell , 1993, IEEE Annals of the History of Computing.

[27]  Yang Yang,et al.  Fabrication of Infrared Left‐Handed Metamaterials via Double Template‐Assisted Electrochemical Deposition , 2008 .

[28]  Chunmei Ouyang,et al.  Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude , 2014, Advanced materials.

[29]  Zahra Kavehvash,et al.  Analog Computing Using Graphene-based Metalines , 2015, Optics letters.

[30]  Bahram Jalali,et al.  Analog optical computing , 2015, Nature Photonics.

[31]  Jingbo Sun,et al.  High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode. , 2015, Nano letters.

[32]  Anders Pors,et al.  Analog computing using reflective plasmonic metasurfaces. , 2015, Nano letters.