Content-Based Image Retrieval - A Survey

Current technology allows the acquisition, transmission, storing, and manipulation of large collections of images. Images are retrieved basing on similarity of features where features of the query specification are compared with features from the image database to determine which images match similarly with given features. Feature extraction is a crucial part for any of such retrieval systems. So far, the only way of searching these collections was based on keyword indexing, or simply by browsing. However nowadays digital images databases open the way to content-based efficient searching. In this paper we survey some technical aspects of current content-based image retrieval systems.

[1]  Vijay V. Raghavan,et al.  Content-Based Image Retrieval Systems - Guest Editors' Introduction , 1995, Computer.

[2]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Yixin Chen,et al.  A Region-Based Fuzzy Feature Matching Approach to Content-Based Image Retrieval , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Raimondo Schettini,et al.  A relevance feedback mechanism for content-based image retrieval , 1999, Inf. Process. Manag..

[5]  M. Teague Image analysis via the general theory of moments , 1980 .

[6]  Arnold W. M. Smeulders,et al.  The PicToSeek WWW image search system , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[7]  David Suter,et al.  Color Image Segmentation Using Global Information and Local Homogeneity , 2003, DICTA.

[8]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Proceedings of International Conference on Image Processing.

[9]  Nozha Boujemaa,et al.  Surfimage: a flexible content-based image retrieval system , 1998, MULTIMEDIA '98.

[10]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[11]  Shih-Fu Chang,et al.  Visual information retrieval from large distributed online repositories , 1997, CACM.

[12]  Amarnath Gupta,et al.  Virage image search engine: an open framework for image management , 1996, Electronic Imaging.

[13]  von F. Zernike Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode , 1934 .

[14]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[15]  Michael Stonebraker,et al.  Chabot: Retrieval from a Relational Database of Images , 1995, Computer.

[16]  John R. Smith,et al.  Modal Keywords, Ontologies, and Reasoning for Video Understanding , 2003, CIVR.

[17]  Yihong Gong,et al.  Detection of Regions Matching Specified Chromatic Features , 1995, Comput. Vis. Image Underst..

[18]  Mohan S. Kankanhalli,et al.  Color and spatial feature for content-based image retrieval , 1999, Pattern Recognit. Lett..

[19]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Multimedia Systems.

[20]  Tom Minka,et al.  Modeling user subjectivity in image libraries , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[21]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[22]  Myron Flickner,et al.  Query by Image and Video Content , 1995 .

[23]  Paul H. Lewis,et al.  Integrated Image Content and Metadata Search and Retrieval across Multiple Databases , 2003, CIVR.