A Survey of Models of Ultraslow Diffusion in Heterogeneous Materials

Ultraslow diffusion is characterized by a logarithmic growth of the mean squared displacement (MSD) as a function of time. It occurs in complex arrangements of molecules, microbes, and many-body systems. This paper reviews mechanical models for ultraslow diffusion in heterogeneous media from both macroscopic and microscopic perspectives. Macroscopic models are typically formulated in terms of a diffusion equation that employs noninteger order derivatives (distributed order, structural, and comb models (CM)) or employs a diffusion coefficient that is a function of space or time. Microscopic models are usually based on the continuous time random walk (CTRW) theory, but use a weighted logarithmic function as the limiting formula of the waiting time density. The similarities and differences between these models are analyzed and compared with each other. The corresponding MSD in each case is tabulated and discussed from the perspectives of the underlying assumptions and of real-world applications in heterogeneous materials. It is noted that the CMs can be considered as a type of two-dimensional distributed order fractional derivative model (DFDM), and that the structural derivative models (SDMs) generalize the DFDMs. The heterogeneous diffusion process model (HDPM) with time-dependent diffusivity can be rewritten to a local structural derivative diffusion model mathematically. The ergodic properties, aging effect, and velocity autocorrelation for the ultraslow diffusion models are also briefly discussed.

[1]  Wen Chen,et al.  Hausdorff Calculus , 2019 .

[2]  M. Kirane,et al.  Extremum principle for the Hadamard derivatives and its application to nonlinear fractional partial differential equations , 2018, Fractional Calculus and Applied Analysis.

[3]  Wen Chen,et al.  Non-local structural derivative Maxwell model for characterizing ultra-slow rheology in concrete , 2018, Construction and Building Materials.

[4]  Xu Yang,et al.  A local structural derivative PDE model for ultraslow creep , 2018, Comput. Math. Appl..

[5]  Wen Chen,et al.  Continuous time random walk model with asymptotical probability density of waiting times via inverse Mittag-Leffler function , 2018, Commun. Nonlinear Sci. Numer. Simul..

[6]  Wen Chen,et al.  A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids , 2018, Commun. Nonlinear Sci. Numer. Simul..

[7]  Yingjie Liang Diffusion entropy method for ultraslow diffusion using inverse Mittag-Leffler function , 2018 .

[8]  E. K. Lenzi,et al.  Fractional Diffusion Equations and Anomalous Diffusion , 2018 .

[9]  Hayafumi Watanabe,et al.  Empirical observations of ultraslow diffusion driven by the fractional dynamics in languages: Dynamical statistical properties of word counts of already popular words , 2018, Physical review. E.

[10]  I. Sokolov,et al.  The effect of the junction model on the anomalous diffusion in the 3D comb structure , 2017, 1709.08109.

[11]  H. Kantz,et al.  Ageing effects in ultraslow continuous time random walks , 2017 .

[12]  Wen Chen,et al.  Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations , 2017 .

[13]  Yingjie Liang,et al.  New methodologies in fractional and fractal derivatives modeling , 2017 .

[14]  S. B. Yuste,et al.  Continuous-time random-walk model for anomalous diffusion in expanding media. , 2017, Physical review. E.

[15]  Andrew G. Webb,et al.  Accurate Padé Global Approximations for the Mittag-Leffler Function, Its Inverse, and Its Partial Derivatives to Efficiently Compute Convergent Power Series , 2017 .

[16]  Wen Chen,et al.  A Spatial Structural Derivative Model for Ultraslow Diffusion , 2017, 1705.01542.

[17]  Agnieszka Wyłomańska,et al.  Mean-squared-displacement statistical test for fractional Brownian motion. , 2017, Physical review. E.

[18]  Hong Zhao,et al.  Ultraslow diffusion and weak ergodicity breaking in right triangular billiards. , 2017, Physical review. E.

[19]  Richard L. Magin,et al.  Using spectral and cumulative spectral entropy to classify anomalous diffusion in Sephadex™ gels , 2017, Comput. Math. Appl..

[20]  Andrey G. Cherstvy,et al.  Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation. , 2016, Physical review. E.

[21]  Wen Chen Non-Power-Function Metric: a Generalized Fractal , 2016 .

[22]  Y. Hon,et al.  Characterizing time dependent anomalous diffusion process: A survey on fractional derivative and nonlinear models , 2016 .

[23]  On the summation of Taylor’s series on the contour of the domain of summability , 2016 .

[24]  Wen Chen,et al.  Structural derivative based on inverse Mittag-Leffler function for modeling ultraslow diffusion , 2016 .

[25]  Richard L. Magin,et al.  A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging , 2016, Commun. Nonlinear Sci. Numer. Simul..

[26]  Andrey G. Cherstvy,et al.  Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion , 2016, Scientific Reports.

[27]  V. Méndez,et al.  Does ultra-slow diffusion survive in a three dimensional cylindrical comb? , 2016 .

[28]  H. Kantz,et al.  Comb model with slow and ultraslow diffusion , 2015, 1512.07781.

[29]  Holger Kantz,et al.  Distributed-order diffusion equations and multifractality: Models and solutions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  P. N. Nelson,et al.  The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests , 2015 .

[31]  Andrey G. Cherstvy,et al.  Quantifying the non-ergodicity of scaled Brownian motion , 2015, Journal of Physics A: Mathematical and Theoretical.

[32]  Igor M. Sokolov,et al.  A toolbox for determining subdiffusive mechanisms , 2015 .

[33]  Andrey G. Cherstvy,et al.  Ultraslow scaled Brownian motion , 2015, 1503.08125.

[34]  A. Chechkin,et al.  Aging scaled Brownian motion. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Takashi Uneyama,et al.  Fluctuation analysis of time-averaged mean-square displacement for the Langevin equation with time-dependent and fluctuating diffusivity. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  YangQuan Chen,et al.  Global Padé Approximations of the Generalized Mittag-Leffler Function and its Inverse , 2013, 1310.5592.

[37]  H. Kantz,et al.  Diffusion and Fokker-Planck-Smoluchowski Equations with Generalized Memory Kernel , 2015 .

[38]  R. Metzler,et al.  Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: ageing and ultraslow diffusion , 2014 .

[39]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[40]  R. Gorenflo,et al.  Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.

[41]  G. Zimbardo,et al.  A numerical study of Lévy random walks: Mean square displacement and power-law propagators , 2014, Journal of Plasma Physics.

[42]  A. Godec,et al.  Localisation and universal fluctuations in ultraslow diffusion processes , 2014, 1406.6199.

[43]  Ralf Metzler,et al.  Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. , 2014, Physical chemistry chemical physics : PCCP.

[44]  Andrey G. Cherstvy,et al.  Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Akihiro Kusumi,et al.  Ultrafast Diffusion of a Fluorescent Cholesterol Analog in Compartmentalized Plasma Membranes , 2014, Traffic.

[46]  T. Mareci,et al.  On random walks and entropy in diffusion‐weighted magnetic resonance imaging studies of neural tissue , 2014, Magnetic resonance in medicine.

[47]  Andrey G. Cherstvy,et al.  Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity. , 2013, Soft matter.

[48]  Lloyd P. Sanders,et al.  Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: ageing and ultraslow diffusion , 2013, 1311.3790.

[49]  Andrey G. Cherstvy,et al.  Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. , 2013, Physical chemistry chemical physics : PCCP.

[50]  N. Leonenko,et al.  Tauberian and Abelian Theorems for Long-range Dependent Random Fields , 2013 .

[51]  R. Metzler,et al.  Microscopic origin of the logarithmic time evolution of aging processes in complex systems. , 2013, Physical review letters.

[52]  Andrey G. Cherstvy,et al.  Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes , 2013, 1303.5533.

[53]  H. Kantz,et al.  Limiting distributions of continuous-time random walks with superheavy-tailed waiting times. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Igor M. Sokolov,et al.  Models of anomalous diffusion in crowded environments , 2012 .

[55]  M. Liang,et al.  Time/depth dependent diffusion and chemical reaction model of chloride transportation in concrete , 2012 .

[56]  S. B. Yuste,et al.  Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Anatoly N. Kochubei,et al.  General Fractional Calculus, Evolution Equations, and Renewal Processes , 2011, 1105.1239.

[58]  H. Kantz,et al.  Continuous-time random walk with a superheavy-tailed distribution of waiting times. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  S. C. Lim,et al.  Fractional Langevin equations of distributed order. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Ralf Metzler,et al.  Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. , 2010, Physical chemistry chemical physics : PCCP.

[61]  P. Sibani,et al.  Ageing in dense colloids as diffusion in the logarithm of time , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[62]  H. Kantz,et al.  Continuous-time random walk theory of superslow diffusion , 2010, 1010.0782.

[63]  Chaoming Song,et al.  Modelling the scaling properties of human mobility , 2010, 1010.0436.

[64]  L. Berthier,et al.  Subdiffusion and intermittent dynamic fluctuations in the aging regime of concentrated hard spheres. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Yong Zhang,et al.  Moments for Tempered Fractional Advection-Diffusion Equations , 2010 .

[66]  J. Theriot,et al.  Chromosomal Loci Move Subdiffusively through a Viscoelastic Cytoplasm , 2010 .

[67]  Hongguang Sun,et al.  Anomalous diffusion modeling by fractal and fractional derivatives , 2010, Comput. Math. Appl..

[68]  J. Fineberg,et al.  Slip-stick and the evolution of frictional strength , 2010, Nature.

[69]  Rina Schumer,et al.  Fractional advection‐dispersion equations for modeling transport at the Earth surface , 2009 .

[70]  A. Zoia,et al.  Continuous-time random-walk approach to normal and anomalous reaction-diffusion processes. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Anatoly N. Kochubei,et al.  Distributed order calculus and equations of ultraslow diffusion , 2008 .

[72]  I. Sokolov,et al.  Anomalous transport : foundations and applications , 2008 .

[73]  R. Gorenflo,et al.  Time-fractional Diffusion of Distributed Order , 2007, cond-mat/0701132.

[74]  C. Knudby,et al.  A continuous time random walk approach to transient flow in heterogeneous porous media , 2006 .

[75]  M. Meerschaert,et al.  Stochastic model for ultraslow diffusion , 2006 .

[76]  Hans-Peter Scheffler,et al.  Random walk approximation of fractional-order multiscaling anomalous diffusion. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Rudolf Hilfer,et al.  Computation of the generalized Mittag-Leffler function and its inverse in the complex plane , 2006 .

[78]  Random walk to a nonergodic equilibrium concept. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  W. Chen Time-space fabric underlying anomalous diffusion , 2005, math-ph/0505023.

[80]  I. Podlubny,et al.  Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.

[81]  T. Pöschel,et al.  BOOK REVIEW: Kinetic Theory of Granular Gases , 2004 .

[82]  Fawang Liu,et al.  Similarity solutions for solute transport in fractal porous media using a time- and scale-dependent dispersivity , 2005 .

[83]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[84]  David Deutsch,et al.  Bryce Seligman DeWitt , 2005 .

[85]  Nearly logarithmic decay in the colloidal hard-sphere system. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[87]  Mario Nicodemi,et al.  Slow relaxation and compaction of granular systems , 2005, Nature materials.

[88]  M. Meerschaert,et al.  Limit theorems for continuous time random walks with slowly varying waiting times , 2005 .

[89]  D. Benson,et al.  Radial fractional‐order dispersion through fractured rock , 2004 .

[90]  Thorsten Pöschel,et al.  Kinetic Theory of Granular Gases , 2004 .

[91]  I. M. Sokolov,et al.  Distributed-Order Fractional Kinetics , 2004 .

[92]  Francesco Mainardi,et al.  The Wright functions as solutions of the time-fractional diffusion equation , 2003, Appl. Math. Comput..

[93]  I. M. Sokolov,et al.  Fractional Fokker-Planck equation for ultraslow kinetics , 2003 .

[94]  Direct visualization of ageing in colloidal glasses , 2002, cond-mat/0209148.

[95]  Ultraslow vacancy-mediated tracer diffusion in two dimensions: the Einstein relation verified. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[96]  R. S. Coleman,et al.  Complex local dynamics in DNA on the picosecond and nanosecond time scales. , 2002, Physical review letters.

[97]  I M Sokolov,et al.  Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  Crumpling a thin sheet. , 2001, Physical review letters.

[99]  D. Weitz,et al.  Subdiffusion and the cage effect studied near the colloidal glass transition , 2001, cond-mat/0111073.

[100]  E. Weeks,et al.  S ep 2 00 2 Direct visualization of aging in colloidal glasses , 2002 .

[101]  W. Stahel,et al.  Log-normal Distributions across the Sciences: Keys and Clues , 2001 .

[102]  E. Lutz Fractional Langevin equation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  France.,et al.  Ultra-Slow Vacancy-Mediated Tracer Diffusion in Two Dimensions: The Einstein Relation Verified , 2001, cond-mat/0101117.

[104]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[105]  J. Klafter,et al.  Strong anomaly in diffusion generated by iterated maps. , 2000, Physical review letters.

[106]  Ovadyahu,et al.  Aging effects in an anderson insulator , 2000, Physical review letters.

[107]  J. Klafter,et al.  Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .

[108]  Evaluation of fractal parameters of percolation model objects and natural porous media by means of NMR microscopy , 1999 .

[109]  Cassi,et al.  Random walks on bundled structures. , 1996, Physical review letters.

[110]  P. Rosenau,et al.  Fast and superfast diffusion processes. , 1995, Physical review letters.

[111]  N. Kuipers,et al.  Non-fickian diffusion with chemical reaction in glassy polymers with swelling induced by the penetrant: a mathematical model , 1993 .

[112]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[113]  G. Weiss,et al.  A new class of long-tailed pausing time densities for the CTRW , 1990 .

[114]  Anomalous diffusion on a random comblike structure. , 1987, Physical review. A, General physics.

[115]  Generalisation of the Sinai anomalous diffusion law , 1987 .

[116]  Harry Kesten,et al.  The limit distribution of Sinai's random walk in random environment , 1986 .

[117]  Y. Sinai The Limiting Behavior of a One-Dimensional Random Walk in a Random Medium , 1983 .

[118]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[119]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[120]  M. Caputo Conformal projection of an ellipsoid of revolution when the scale factor and its normal derivative are assigned on a geodesic line of the ellipsoid , 1959 .

[121]  Gordon H. Hardy Gösta Mittag‐Leffler* , 1928 .