Segmentation of 3D Medical Structures Using Robust Ray Propagation

A robust and efficient method for the segmentation of 3D structures in CT and MR images is presented. The proposed method is based on 3D ray propagation by mean shift analysis with a smoothness constraint. Specifically, ray propagation is used to guide an evolving surface due to its computational efficiency. In addition, non-parametric analysis and shape priors are incorporated to the proposed technique for robust convergence. Several examples are depicted to illustrate its effectiveness.

[1]  Jake K. Aggarwal,et al.  Curvature-based representation of objects from range data , 1986, Image Vis. Comput..

[2]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[3]  Dimitris N. Metaxas,et al.  Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[6]  T. Caelli,et al.  On the Relationship Between Surface Covariance and Differential Geometry , 1994 .

[7]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[8]  Ross T. Whitaker,et al.  Algorithms for implicit deformable models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[9]  Demetri Terzopoulos,et al.  A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. , 1995, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[10]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  D. DeCarlo,et al.  Blended Deformable Models , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Anthony J. Yezzi,et al.  A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.

[13]  Benjamin B. Kimia,et al.  Volumetric Segmentation of Medical Images by Three-Dimensional Bubbles , 1997, Comput. Vis. Image Underst..

[14]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[15]  Benjamin B. Kimia,et al.  Segmentation of Carpal Bones from 3d CT Images Using Skeletally Coupled Deformable Models , 1998, MICCAI.

[16]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[17]  Kaleem Siddiqi,et al.  Area and length minimizing flows for shape segmentation , 1998, IEEE Trans. Image Process..

[18]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[19]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[20]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[21]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[22]  Mie Sato,et al.  3D digital cleansing using segmentation rays , 2000 .

[23]  David E. Breen,et al.  Segmentation of Biological Volume Datasets Using a Level-Set Framework , 2001, VG.

[24]  Dorin Comaniciu,et al.  Vessel detection by mean shift based ray propagation , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[25]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..