Highly fluorescent noble-metal quantum dots.

Highly fluorescent, water-soluble, few-atom noble-metal quantum dots have been created that behave as multielectron artificial atoms with discrete, size-tunable electronic transitions throughout the visible and near infrared. These molecular metals exhibit highly polarizable transitions and scale in size according to the simple relation E(Fermi)/N(1/3), predicted by the free-electron model of metallic behavior. This simple scaling indicates that fluorescence arises from intraband transitions of free electrons, and these conduction-electron transitions are the low-number limit of the plasmon-the collective dipole oscillations occurring when a continuous density of states is reached. Providing the missing link between atomic and nanoparticle behavior in noble metals, these emissive, water-soluble Au nanoclusters open new opportunities for biological labels, energy-transfer pairs, and light-emitting sources in nanoscale optoelectronics.

[1]  R. Dickson,et al.  Strongly enhanced field-dependent single-molecule electroluminescence , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Peter W. Stephens,et al.  Structural evolution of smaller gold nanocrystals: The truncated decahedral motif , 1997 .

[3]  M. Broyer,et al.  Optical properties of gold clusters in the size range 2-4 nm , 1998 .

[4]  A. M. Alvarez,et al.  Crystal Structures of Molecular Gold Nanocrystal Arrays , 1999 .

[5]  L. Wallenberg,et al.  On the crystal structure of small gold crystals and large gold clusters , 1985 .

[6]  Winston A. Saunders,et al.  Electronic Shell Structure and Abundances of Sodium Clusters , 1984 .

[7]  A. Schmid,et al.  Template Guided Self-Assembly of [Au55] Clusters on Nanolithographically Defined Monolayer Patterns , 2002 .

[8]  Masui,et al.  Collective dipole oscillations in small sodium clusters. , 1987, Physical review letters.

[9]  G. Ertl,et al.  Ag8 fluorescence in argon. , 2001, Physical review letters.

[10]  G. Kästle,et al.  Oxidation-Resistant Gold-55 Clusters , 2002, Science.

[11]  R. Murray,et al.  Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters , 2001 .

[12]  R. Dickson,et al.  High quantum yield blue emission from water-soluble Au8 nanodots. , 2003, Journal of the American Chemical Society.

[13]  K. Fang,et al.  Photostimulated luminescence of AgI clusters in zeolite-Y , 1998 .

[14]  G. Ozin,et al.  Cryophotoclustering techniques for synthesizing very small, naked silver clusters Agn of known size (where n = 2-5). The molecular metal cluster-bulk metal particle interface , 1978 .

[15]  C. Granqvist,et al.  6s-Electrons in Stabilized Au55-Clusters , 1990 .

[16]  J. Rivoal,et al.  Deposition of mass selected silver clusters in rare gas matrices , 1990 .

[17]  R. Dickson,et al.  Photoactivated fluorescence from individual silver nanoclusters. , 2001, Science.

[18]  A. Benninghoven,et al.  Formation of very large gold superclusters (clusters of clusters) as secondary ions up to (Au13)55 by SIMS , 1990 .

[19]  M. El-Sayed,et al.  Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster , 2002 .

[20]  R. Murray,et al.  Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. , 2004, Journal of the American Chemical Society.

[21]  P. Gombás,et al.  Theory of Metals , 1946, Nature.

[22]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[23]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[24]  D. Mingos,et al.  Closed-shell electronic requirements for condensed clusters of the group 11 elements , 1991 .

[25]  N. Makarava,et al.  Water-soluble hybrid nanoclusters with extra bright and photostable emissions: a new tool for biological imaging. , 2005, Biophysical journal.

[26]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[27]  R. Dickson,et al.  Nanoparticle-free single molecule anti-stokes Raman spectroscopy. , 2005, Physical review letters.

[28]  B. Collings,et al.  Optical spectroscopy of Ag7, Ag9+, and Ag9. A test of the photodepletion method , 1994 .

[29]  P. Kumar,et al.  Photon antibunching from oriented conducting polymer nanostructures , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[30]  Clemenger,et al.  Ellipsoidal shell structure in free-electron metal clusters. , 1985, Physical review. B, Condensed matter.

[31]  Tae-Hee Lee,et al.  Single-molecule optoelectronics. , 2005, Accounts of chemical research.

[32]  Eugenia Kumacheva,et al.  Photogeneration of Fluorescent Silver Nanoclusters in Polymer Microgels , 2005 .

[33]  Masui,et al.  Photoabsorption spectra of sodium clusters. , 1991, Physical review. B, Condensed matter.

[34]  R. Murray,et al.  28 KDA ALKANETHIOLATE-PROTECTED AU CLUSTERS GIVE ANALOGOUS SOLUTION ELECTROCHEMISTRY AND STM COULOMB STAIRCASES , 1997 .

[35]  André Raschke,et al.  Quasi One-Dimensional Arrangements of Au55(PPh3)12Cl6 Clusters and Their Electrical Properties at Room Temperature , 2001 .

[36]  Roy L. Johnston,et al.  Atomic and molecular clusters , 2002 .

[37]  Uzi Landman,et al.  Gold clusters(AuN,2<~N<~10)and their anions , 2000 .

[38]  R. Whetten,et al.  Coadsorption of CO and O(2) on selected gold clusters: evidence for efficient room-temperature CO(2) generation. , 2002, Journal of the American Chemical Society.

[39]  R. Murray,et al.  Water-Soluble, Sulfonic Acid-Functionalized, Monolayer-Protected Nanoparticles and an Ionically Conductive Molten Salt Containing Them , 2001 .

[40]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[41]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[42]  Robert M Dickson,et al.  Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. , 2002, Journal of the American Chemical Society.

[43]  A. Bard,et al.  Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. , 2004, Journal of the American Chemical Society.

[44]  Schmidt,et al.  Size dependence of the optical response of spherical sodium clusters. , 1995, Physical review letters.

[45]  Saunders,et al.  Polarizability of alkali clusters. , 1985, Physical review. B, Condensed matter.

[46]  R. Crooks,et al.  Dendrimer‐Encapsulated Pt Nanoparticles: Synthesis, Characterization, and Applications to Catalysis , 1999 .

[47]  B. Lounis,et al.  Fluorescent silver oligomeric clusters and colloidal particles , 2005 .

[48]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[49]  F. Bossi,et al.  Searching for K(L) ---> pi0 neutrino anti-neutrino at a phi factory , 1998, hep-ph/9802345.

[50]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[51]  R. Crooks,et al.  PREPARATION AND CHARACTERIZATION OF 1?2 NM DENDRIMER-ENCAPSULATED GOLD NANOPARTICLES HAVING VERY NARROW SIZE DISTRIBUTIONS , 2004 .

[52]  R. Murray,et al.  Water-Soluble, Isolable Gold Clusters Protected by Tiopronin and Coenzyme A Monolayers , 1999 .

[53]  J. Buttet,et al.  Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices , 1993 .

[54]  H. Metiu,et al.  Intact size-selected Au(n) clusters on a TiO2(110)-(1 x 1) surface at room temperature. , 2005, Journal of the American Chemical Society.

[55]  Photon emission from individual supported gold clusters: thin film versus bulk oxide. , 2001 .

[56]  Shoujun Xu,et al.  Onset of metallic behavior in magnesium clusters. , 2002, Physical review letters.

[57]  R. Kubo Electronic Properties of Metallic Fine Particles. I. , 1962 .

[58]  R. Murray,et al.  Redox and fluorophore functionalization of water-soluble, Tiopronin- protected gold clusters , 1999 .

[59]  G. Ertl,et al.  Chemiluminescence in the Agglomeration of Metal Clusters , 1996, Science.

[60]  Guenter Schmid,et al.  Large clusters and colloids. Metals in the embryonic state , 1992 .

[61]  R. S. Hikida,et al.  Influence of pH on dendrimer-protected nanoparticles , 2002 .

[62]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[63]  G. Schmid,et al.  Current and future applications of nanoclusters , 2010 .

[64]  Schmid,et al.  Naked Au55 clusters: dramatic effect of a thiol-terminated dendrimer , 2000, Chemistry.

[65]  B. K. Rao,et al.  Physics and chemistry of small clusters , 1987 .

[66]  R. Dickson,et al.  Highly fluorescent, water-soluble, size-tunable gold quantum dots. , 2004, Physical review letters.

[67]  D. Nesbitt,et al.  Diffraction-Limited Photogeneration and Characterization of Silver Nanoparticles , 2004 .

[68]  R. Jin,et al.  Thermally-induced formation of atomic Au clusters and conversion into nanocubes. , 2004, Journal of the American Chemical Society.

[69]  Tae-Hee Lee,et al.  Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature. , 2004, Physical review letters.

[70]  H. Haberland,et al.  Optical spectra and their moments for sodium clusters, , with 3 n 64 , 1999 .

[71]  R. Murray,et al.  Near-IR luminescence of monolayer-protected metal clusters. , 2005, Journal of the American Chemical Society.

[72]  Jie Zheng FLUORESCENT NOBLE METAL NANOCLUSTERS , 2005 .

[73]  B. Collings,et al.  Absorption spectra of small niobium and gold clusters measured by photodepletion of their rare gas van der Waals complexes: some preliminary experiments , 1993 .

[74]  N. Nilius,et al.  Development of One-Dimensional Band Structure in Artificial Gold Chains , 2002, Science.

[75]  Jess P. Wilcoxon,et al.  Photoluminescence from nanosize gold clusters , 1998 .

[76]  A. Zvyagin,et al.  Synthesis and spectroscopic observation of dendrimer-encapsulated gold nanoclusters. , 2006, Chemical communications.

[77]  J. Buttet,et al.  Optical spectroscopy on size selected gold clusters deposited in rare gas matrices , 1991 .

[78]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[79]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[80]  Absorption and fluorescence spectra of Ar-matrix-isolated Ag3 clusters , 2000 .

[81]  G. Wertheim,et al.  Noble- and transition-metal clusters: The d bands of silver and palladium. , 1986, Physical review. B, Condensed matter.

[82]  T. M. Bernhardt,et al.  Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix , 2006 .

[83]  H. Haberland Clusters of atoms and molecules : theory, experiment, and clusters of atoms , 1994 .

[84]  Robert M Dickson,et al.  DNA-templated Ag nanocluster formation. , 2004, Journal of the American Chemical Society.

[85]  A. Mehta,et al.  Oriented semiconducting polymer nanostructures as on-demand room-temperature single-photon sources , 2004 .

[86]  Robert M. Dickson,et al.  Mechanism of Agn nanocluster photoproduction from silver oxide films , 2002 .

[87]  Lajos P. Balogh,et al.  Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters , 1998 .

[88]  S. C. Parker,et al.  The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering , 2002, Science.

[89]  J. Buttet,et al.  Deposition of mass selected gold clusters in solid krypton , 1992 .

[90]  David M. Rayner,et al.  OPTICAL ABSORPTION SPECTRA OF AU7, AU9, AU11, AND AU13, AND THEIR CATIONS : GOLD CLUSTERS WITH 6, 7, 8, 9, 10, 11, 12, AND 13 S-ELECTRONS , 1994 .

[91]  Hellmut Haberland,et al.  Clusters of Atoms and Molecules II , 1994 .

[92]  P. Bartlett,et al.  Synthesis of water-soluble undecagold cluster compounds of potential importance in electron microscopic and other studies of biological systems , 1978 .

[93]  Tae‐Hee Lee Silver nanocluster single molecule optoelectronics and its applications , 2004 .