Analysis of class I complexity induced spherical polytropic models for compact objects

In this research, we present a comprehensive framework that uses a complexity factor to analyze class I generalized relativistic polytropes. We establish class I generalized Lane–Emden equations using the Karmarkar condition under both isothermal and non-isothermal regimes. Our approach considers a spherically symmetric fluid distribution for two cases of the generalized polytropic equation of state: 1) the mass density case μ o and 2) the energy density case μ. To obtain numerical solutions for both cases, we solve two sets of differential equations that incorporate the complexity factor. Finally, we conduct a graphical analysis of these solutions.

[1]  Munsif Jan,et al.  Analysis of Charged Compact Stars in f(R, T) Gravity using Bardeen Geometry , 2022, International Journal of Geometric Methods in Modern Physics (IJGMMP).

[2]  M. Shamir,et al.  Relativistic Krori‐Barua Compact Stars in f(R,T)$f(R,T)$ Gravity , 2022, Fortschritte der Physik.

[3]  Basem Abdullah M. Al Alwan,et al.  Bardeen compact stars in modified f(G) gravity , 2022, Canadian Journal of Physics.

[4]  F. Mofarreh,et al.  A study of charged stellar structure in modified f(R,ϕ,χ) gravity , 2022, International Journal of Geometric Methods in Modern Physics.

[5]  A. Ikram,et al.  Dissipative charged homologous model for cluster of stars in f(R,T), 2022, Physics of the Dark Universe.

[6]  Zhiyue Zhang,et al.  Anisotropic spheres via embedding approach in f(R) gravity , 2022, International Journal of Geometric Methods in Modern Physics (IJGMMP).

[7]  Iftikhar Ahmad,et al.  A study of anisotropic compact stars in f(R,ϕ,X) theory of gravity , 2021, International Journal of Geometric Methods in Modern Physics.

[8]  Shiraz Khan,et al.  Study of generalized cylindrical polytropes with complexity factor , 2021, The European Physical Journal C.

[9]  R. Manzoor,et al.  Evolution of cluster of stars in f(R) gravity , 2021, 2112.11676.

[10]  Shiraz Khan,et al.  Study of charged generalized polytropes with complexity factor , 2021, The European Physical Journal Plus.

[11]  E. Contreras,et al.  Class I polytropes for anisotropic matter , 2021, The European Physical Journal C.

[12]  L. Herrera,et al.  The general relativistic double polytrope for anisotropic matter , 2020, 2007.00193.

[13]  R. N. Jamil,et al.  Impact of generalized polytropic equation of state on charged anisotropic polytropes , 2020, The European Physical Journal C.

[14]  R. N. Jamil,et al.  New models of charged anisotropic polytropes with radiation density , 2020 .

[15]  Shiraz Khan,et al.  Framework for generalized polytropes with complexity factor , 2019, The European Physical Journal C.

[16]  M. Z. Bhatti,et al.  Conformally flat polytropes for anisotropic fluid in f (R) gravity , 2019, The European Physical Journal Plus.

[17]  M. Sharif,et al.  Electromagnetic effects on complexity factor for static cylindrical system , 2019, Chinese Journal of Physics.

[18]  A. Asif,et al.  New classes of generalized anisotropic polytropes pertaining radiation density , 2019, The European Physical Journal Plus.

[19]  A. Wojnar Polytropic stars in Palatini gravity , 2018, The European Physical Journal C.

[20]  G. Abbas,et al.  Complexity factor for anisotropic source in non-minimal coupling metric f(R) gravity , 2018, The European Physical Journal C.

[21]  M. Sharif,et al.  Complexity factor for static cylindrical system , 2018, The European Physical Journal C.

[22]  M. Azam,et al.  New classes of anisotropic models with generalized polytropic equation of state , 2018, The European Physical Journal C.

[23]  G. Abbas,et al.  Complexity factor for static anisotropic self-gravitating source in f(R) gravity , 2018, The European Physical Journal C.

[24]  L. Herrera New definition of complexity for self-gravitating fluid distributions: The spherically symmetric, static case , 2018, 1801.08358.

[25]  M. Azam,et al.  Cracking of charged polytropes with generalized polytropic equation of state , 2016, 1701.04686.

[26]  N. Pant,et al.  Anisotropic compact stars in Karmarkar spacetime , 2016, 1610.03698.

[27]  K. Singh,et al.  A family of well-behaved Karmarkar spacetimes describing interior of relativistic stars , 2016, 1607.05971.

[28]  M. Azam,et al.  Study of polytropes with generalized polytropic equation of state , 2016, 1605.02308.

[29]  L. Herrera,et al.  Cracking of general relativistic anisotropic polytropes , 2015, 1509.07143.

[30]  Y. K. Gupta,et al.  Spherically symmetric charged compact stars , 2015 .

[31]  P. Chavanis Partially relativistic self-gravitating Bose-Einstein condensates with a stiff equation of state , 2014, 1412.0005.

[32]  L. Herrera,et al.  Conformally flat polytropes for anisotropic matter , 2014, 1410.6636.

[33]  P. Chavanis Models of universe with a polytropic equation of state: II. The late universe , 2012, 1208.0801.

[34]  L. Herrera,et al.  General relativistic polytropes for anisotropic matter: The general formalism and applications , 2013, 1310.1114.

[35]  L. Herrera,et al.  Newtonian polytropes for anisotropic matter: General framework and applications , 2013, 1304.2824.

[36]  P. Chavanis Models of universe with a polytropic equation of state: I. The early universe , 2012, 1208.0797.

[37]  L. Herrera,et al.  Role of electric charge and cosmological constant in structure scalars , 2011, 1111.1071.

[38]  L. Herrera,et al.  Structure and evolution of self-gravitating objects and the orthogonal splitting of the Riemann tensor , 2009, 0903.3532.

[39]  U. Mukhopadhyay,et al.  Dark energy with polytropic equation of state , 2005, astro-ph/0510550.

[40]  V. Dokuchaev,et al.  Dark energy cosmology with generalized linear equation of state , 2004, astro-ph/0407190.

[41]  L. Herrera,et al.  Evolution of Relativistic Polytropes in the Post–Quasi–Static Regime , 2003, gr-qc/0309052.

[42]  A. Hendry A polytropic model of the Sun , 1993 .

[43]  M. C. Durgapal,et al.  Relativistic polytropic spheres in general relativity , 1991 .

[44]  G. Horedt Physical characteristics ofN-dimensional, radially-symmetric polytropes , 1987 .

[45]  Manmohan Singh,et al.  The structure of the tidally and rotationally distorted polytropes , 1983 .

[46]  S. N. Pandey,et al.  Insufficiency of Karmarkar's condition , 1982 .

[47]  J. Sharma Relativistic spherical polytropes: An analytical approach , 1981 .

[48]  A. Kovetz SLOWLY ROTATING POLYTROPES. , 1968 .

[49]  J. William,et al.  Polytropic spheres in general relativity , 1967 .

[50]  J. Monaghan,et al.  The Structure of Rapidly Rotating Polytropes , 1965 .

[51]  R. F. Tooper Adiabatic Fluid Spheres in General Relativity. , 1965 .

[52]  S. A. Kaplan,et al.  The Relativistic Instability of Polytropic Spheres , 1965 .

[53]  R. F. Tooper General Relativistic Polytropic Fluid Spheres. , 1964 .

[54]  Louis Bel Inductions électromagnétique et gravitationnelle , 1961 .

[55]  K. R. Karmarkar Gravitational metrics of spherical symmetry and class one , 1948 .

[56]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[57]  John Eiesland The group of motions of an Einstein space , 1925 .

[58]  L. Schlaefli Nota alla Memoria del sig. Beltrami, « Sugli spazii di curvatura costante » , 1871 .

[59]  H. J. Lane On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment , 1870, American Journal of Science and Arts.