Analysis of class I complexity induced spherical polytropic models for compact objects
暂无分享,去创建一个
[1] Munsif Jan,et al. Analysis of Charged Compact Stars in f(R, T) Gravity using Bardeen Geometry , 2022, International Journal of Geometric Methods in Modern Physics (IJGMMP).
[2] M. Shamir,et al. Relativistic Krori‐Barua Compact Stars in f(R,T)$f(R,T)$ Gravity , 2022, Fortschritte der Physik.
[3] Basem Abdullah M. Al Alwan,et al. Bardeen compact stars in modified f(G) gravity , 2022, Canadian Journal of Physics.
[4] F. Mofarreh,et al. A study of charged stellar structure in modified f(R,ϕ,χ) gravity , 2022, International Journal of Geometric Methods in Modern Physics.
[5]
A. Ikram,et al.
Dissipative charged homologous model for cluster of stars in
[6] Zhiyue Zhang,et al. Anisotropic spheres via embedding approach in f(R) gravity , 2022, International Journal of Geometric Methods in Modern Physics (IJGMMP).
[7] Iftikhar Ahmad,et al. A study of anisotropic compact stars in f(R,ϕ,X) theory of gravity , 2021, International Journal of Geometric Methods in Modern Physics.
[8] Shiraz Khan,et al. Study of generalized cylindrical polytropes with complexity factor , 2021, The European Physical Journal C.
[9] R. Manzoor,et al. Evolution of cluster of stars in f(R) gravity , 2021, 2112.11676.
[10] Shiraz Khan,et al. Study of charged generalized polytropes with complexity factor , 2021, The European Physical Journal Plus.
[11] E. Contreras,et al. Class I polytropes for anisotropic matter , 2021, The European Physical Journal C.
[12] L. Herrera,et al. The general relativistic double polytrope for anisotropic matter , 2020, 2007.00193.
[13] R. N. Jamil,et al. Impact of generalized polytropic equation of state on charged anisotropic polytropes , 2020, The European Physical Journal C.
[14] R. N. Jamil,et al. New models of charged anisotropic polytropes with radiation density , 2020 .
[15] Shiraz Khan,et al. Framework for generalized polytropes with complexity factor , 2019, The European Physical Journal C.
[16] M. Z. Bhatti,et al. Conformally flat polytropes for anisotropic fluid in f (R) gravity , 2019, The European Physical Journal Plus.
[17] M. Sharif,et al. Electromagnetic effects on complexity factor for static cylindrical system , 2019, Chinese Journal of Physics.
[18] A. Asif,et al. New classes of generalized anisotropic polytropes pertaining radiation density , 2019, The European Physical Journal Plus.
[19] A. Wojnar. Polytropic stars in Palatini gravity , 2018, The European Physical Journal C.
[20] G. Abbas,et al. Complexity factor for anisotropic source in non-minimal coupling metric f(R) gravity , 2018, The European Physical Journal C.
[21] M. Sharif,et al. Complexity factor for static cylindrical system , 2018, The European Physical Journal C.
[22] M. Azam,et al. New classes of anisotropic models with generalized polytropic equation of state , 2018, The European Physical Journal C.
[23] G. Abbas,et al. Complexity factor for static anisotropic self-gravitating source in f(R) gravity , 2018, The European Physical Journal C.
[24] L. Herrera. New definition of complexity for self-gravitating fluid distributions: The spherically symmetric, static case , 2018, 1801.08358.
[25] M. Azam,et al. Cracking of charged polytropes with generalized polytropic equation of state , 2016, 1701.04686.
[26] N. Pant,et al. Anisotropic compact stars in Karmarkar spacetime , 2016, 1610.03698.
[27] K. Singh,et al. A family of well-behaved Karmarkar spacetimes describing interior of relativistic stars , 2016, 1607.05971.
[28] M. Azam,et al. Study of polytropes with generalized polytropic equation of state , 2016, 1605.02308.
[29] L. Herrera,et al. Cracking of general relativistic anisotropic polytropes , 2015, 1509.07143.
[30] Y. K. Gupta,et al. Spherically symmetric charged compact stars , 2015 .
[31] P. Chavanis. Partially relativistic self-gravitating Bose-Einstein condensates with a stiff equation of state , 2014, 1412.0005.
[32] L. Herrera,et al. Conformally flat polytropes for anisotropic matter , 2014, 1410.6636.
[33] P. Chavanis. Models of universe with a polytropic equation of state: II. The late universe , 2012, 1208.0801.
[34] L. Herrera,et al. General relativistic polytropes for anisotropic matter: The general formalism and applications , 2013, 1310.1114.
[35] L. Herrera,et al. Newtonian polytropes for anisotropic matter: General framework and applications , 2013, 1304.2824.
[36] P. Chavanis. Models of universe with a polytropic equation of state: I. The early universe , 2012, 1208.0797.
[37] L. Herrera,et al. Role of electric charge and cosmological constant in structure scalars , 2011, 1111.1071.
[38] L. Herrera,et al. Structure and evolution of self-gravitating objects and the orthogonal splitting of the Riemann tensor , 2009, 0903.3532.
[39] U. Mukhopadhyay,et al. Dark energy with polytropic equation of state , 2005, astro-ph/0510550.
[40] V. Dokuchaev,et al. Dark energy cosmology with generalized linear equation of state , 2004, astro-ph/0407190.
[41] L. Herrera,et al. Evolution of Relativistic Polytropes in the Post–Quasi–Static Regime , 2003, gr-qc/0309052.
[42] A. Hendry. A polytropic model of the Sun , 1993 .
[43] M. C. Durgapal,et al. Relativistic polytropic spheres in general relativity , 1991 .
[44] G. Horedt. Physical characteristics ofN-dimensional, radially-symmetric polytropes , 1987 .
[45] Manmohan Singh,et al. The structure of the tidally and rotationally distorted polytropes , 1983 .
[46] S. N. Pandey,et al. Insufficiency of Karmarkar's condition , 1982 .
[47] J. Sharma. Relativistic spherical polytropes: An analytical approach , 1981 .
[48] A. Kovetz. SLOWLY ROTATING POLYTROPES. , 1968 .
[49] J. William,et al. Polytropic spheres in general relativity , 1967 .
[50] J. Monaghan,et al. The Structure of Rapidly Rotating Polytropes , 1965 .
[51] R. F. Tooper. Adiabatic Fluid Spheres in General Relativity. , 1965 .
[52] S. A. Kaplan,et al. The Relativistic Instability of Polytropic Spheres , 1965 .
[53] R. F. Tooper. General Relativistic Polytropic Fluid Spheres. , 1964 .
[54] Louis Bel. Inductions électromagnétique et gravitationnelle , 1961 .
[55] K. R. Karmarkar. Gravitational metrics of spherical symmetry and class one , 1948 .
[56] W. Mccrea. An Introduction to the Study of Stellar Structure , 1939, Nature.
[57] John Eiesland. The group of motions of an Einstein space , 1925 .
[58] L. Schlaefli. Nota alla Memoria del sig. Beltrami, « Sugli spazii di curvatura costante » , 1871 .
[59] H. J. Lane. On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment , 1870, American Journal of Science and Arts.