Positive solutions of asymptotically linear Schrödinger-Poisson systems with a radial potential vanishing at infinity

In this paper, we study the Schrodinger–Poisson system (SP){−Δu+V(x)u+λϕ(x)u=K(x)f(u),inR3,−Δϕ=u2,u>0,inR3, and prove the existence of positive solutions for system (SP) when the nonlinearity f has growth at most linear for λ small, allowing the potential V(x) to vanish at infinity. In addition, also we obtain the nonexistence of a nontrivial positive solution for λ≥14.

[1]  David Ruiz,et al.  The Schrödinger–Poisson equation under the effect of a nonlinear local term , 2006 .

[2]  Juan J. Nieto,et al.  The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects , 2010 .

[3]  Yanheng Ding,et al.  Homoclinic orbits for a nonperiodic Hamiltonian system , 2007 .

[4]  Antonio Ambrosetti,et al.  On Schrödinger-Poisson Systems , 2008 .

[5]  A. Ambrosetti,et al.  Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity , 2005 .

[6]  Carlo Mercuri,et al.  Positive solutions of nonlinear Schrödinger–Poisson systems with radial potentials vanishing at infinity , 2008 .

[7]  Hiroaki Kikuchi On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations , 2007 .

[8]  Yanheng Ding,et al.  Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system , 2009 .

[9]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[10]  M. Willem Minimax Theorems , 1997 .

[11]  Huan-Song Zhou,et al.  Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$ , 2007 .

[12]  Antonio Azzollini,et al.  A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations , 2007, math/0703677.

[13]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[14]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[15]  Fukun Zhao,et al.  On the existence of solutions for the Schrödinger-Poisson equations , 2008 .

[16]  Huan-Song Zhou,et al.  Asymptotically linear Schrödinger equation with potential vanishing at infinity , 2008 .

[17]  Jiabao Su,et al.  Weighted Sobolev embedding with unbounded and decaying radial potentials , 2007 .

[18]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[19]  I. Ekeland Convexity Methods In Hamiltonian Mechanics , 1990 .

[20]  David Ruiz,et al.  Multiple bound states for the Schroedinger-Poisson problem , 2008 .