Land-Surface parameters and objects in hydrology

phenomena related to the flow of water or other materials that can be parameterised using a DEM · basic principles and approaches to modelling of flow · differences between the diverse flow-modelling techniques available · advantages, disadvantages and limitations of the different approaches · why is parameterisation of surface flow a powerful technique?

[1]  R. Horton Drainage‐basin characteristics , 1932 .

[2]  A. N. Strahler Quantitative analysis of watershed geomorphology , 1957 .

[3]  John F. O'Callaghan,et al.  The extraction of drainage networks from digital elevation data , 1984, Comput. Vis. Graph. Image Process..

[4]  Albrecht Preusser Computing contours by successive solution of quintic polynomial equations , 1984, TOMS.

[5]  E. O'Loughlin Prediction of Surface Saturation Zones in Natural Catchments by Topographic Analysis , 1986 .

[6]  O. Palacios-Velez,et al.  Automated river-course, ridge and basin delineation from digital elevation data , 1986 .

[7]  I. Moore,et al.  Physical basis of the length-slope factor in the universal soil loss equation , 1986 .

[8]  I. D. Moore,et al.  Topographic Effects on the Distribution of Surface Soil Water and the Location of Ephemeral Gullies , 1988 .

[9]  M. Hutchinson A new procedure for gridding elevation and stream line data with automatic removal of spurious pits , 1989 .

[10]  D. Montgomery,et al.  Source areas, drainage density, and channel initiation , 1989 .

[11]  David R. Maidment,et al.  Watershed delineation with triangle-based terrain models , 1990 .

[12]  William Gandoy-Bernasconi,et al.  Automatic cascade numbering of unit elements in distributed hydrological models , 1990 .

[13]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[14]  J. Fairfield,et al.  Drainage networks from grid digital elevation models , 1991 .

[15]  T. G. Freeman,et al.  Calculating catchment area with divergent flow based on a regular grid , 1991 .

[16]  David G. Tarboton,et al.  On the extraction of channel networks from digital elevation data , 1991 .

[17]  Jay Lee,et al.  Comparison of existing methods for building triangular irregular network, models of terrain from grid digital elevation models , 1991, Int. J. Geogr. Inf. Sci..

[18]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[19]  D. Montgomery,et al.  Channel Initiation and the Problem of Landscape Scale , 1992, Science.

[20]  Andrea Tribe,et al.  Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method , 1992 .

[21]  David G. Tarboton,et al.  A Physical Basis for Drainage Density , 1992 .

[22]  Y. Tachikawa,et al.  Development of a Basin Geomorphic Information System Using a TIN-DEM Data Structure , 1992 .

[23]  E. Nelson,et al.  Algorithm for Precise Drainage-Basin Delineation , 1994 .

[24]  M. Costa-Cabral,et al.  Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas , 1994 .

[25]  P. Holmgren Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation , 1994 .

[26]  D. Montgomery,et al.  A physically based model for the topographic control on shallow landsliding , 1994 .

[27]  Mark P. Kumler An Intensive Comparison of Triangulated Irregular Networks (TINs) and Digital Elevation Models (DEMs) , 1994 .

[28]  Gregory J. McCabe,et al.  Comparison of Single and Multiple Flow Direction Algorithms for Computing Topographic Parameters in TOPMODEL , 1995 .

[29]  S. Peckham New Results for Self‐Similar Trees with Applications to River Networks , 1995 .

[30]  K. Beven,et al.  The in(a/tan/β) index:how to calculate it and how to use it within the topmodel framework , 1995 .

[31]  Jaroslav Hofierka,et al.  Modelling Topographic Potential for Erosion and Deposition Using GIS , 1996, Int. J. Geogr. Inf. Sci..

[32]  D. Tarboton A new method for the determination of flow directions and upslope areas in grid digital elevation models , 1997 .

[33]  L. Martz,et al.  The assignment of drainage direction over flat surfaces in raster digital elevation models , 1997 .

[34]  J. Vallance,et al.  OBJECTIVE DELINEATION OF LAHAR-INUNDATION HAZARD ZONES , 1998 .

[35]  S. Peckham EFFICIENT EXTRACTION OF RIVER NETWORKS AND HYDROLOGIC MEASUREMENTS FROM DIGITAL ELEVATION DATA , 1998 .

[36]  S. Peckham,et al.  A reformulation of Horton's Laws for large river networks in terms of statistical self‐similarity , 1999 .

[37]  John P. Wilson,et al.  Terrain analysis : principles and applications , 2000 .

[38]  Nicole M. Gasparini,et al.  An object-oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks , 2001 .

[39]  J. Bouma,et al.  Modeling water and soil redistribution in a dynamic landscape context , 2002 .

[40]  J. Gallant,et al.  A multiresolution index of valley bottom flatness for mapping depositional areas , 2003 .

[41]  Dara Entekhabi,et al.  Generation of triangulated irregular networks based on hydrological similarity , 2004 .

[42]  E. Vivoni,et al.  On the effects of triangulated terrain resolution on distributed hydrologic model response , 2005 .

[43]  G. Heuvelink,et al.  DEM resolution effects on shallow landslide hazard and soil redistribution modelling , 2005 .

[44]  J. Schoorl,et al.  Reconstructing high-magnitude/low-frequency landslide events based on soil redistribution modelling and a Late-Holocene sediment record from New Zealand , 2006 .

[45]  M. Hoelzle,et al.  Distributed glacier mass-balance modelling as an important component of modern multi-level glacier monitoring , 2006, Annals of Glaciology.

[46]  S. Gruber,et al.  A mass‐conserving fast algorithm to parameterize gravitational transport and deposition using digital elevation models , 2007 .