A Nonlinear Unified State-Space Model for Ship Maneuvering and Control in a Seaway

This article presents a unified state-space model for ship maneuvering, station-keeping, and control in a seaway. The frequency-dependent potential and viscous damping terms, which in classic theory results in a convolution integral not suited for real-time simulation, is compactly represented by using a state-space formulation. The separation of the vessel model into a low-frequency model (represented by zero-frequency added mass and damping) and a wave-frequency model (represented by motion transfer functions or RAOs), which is commonly used for simulation, is hence made superfluous.

[1]  M. R. Katebi,et al.  H ∞ robust control design for dynamic ship positioning , 1997 .

[2]  F. Tasai Formula for calculating hydrodynamic force of a cylinder heaving on a free surface(n-parameter family). , 1960 .

[3]  Thor I. Fossen,et al.  Marine Control Systems Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles , 2002 .

[4]  J. Gerritsma Shipmotions in longitudinal waves1 , 1960 .

[5]  Alan Caruba,et al.  THE SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS. , 1978 .

[6]  Michael J. Grimble,et al.  The Design of Dynamic Ship Positioning Control Systems Using Extended Kalman Filtering Techniques , 1979 .

[7]  K K Fedyaevsky,et al.  CONTROL AND STABILITY IN SHIP DESIGN , 1964 .

[8]  Steinar Saelid,et al.  Dynamic positioning of floating vessles based on Kalman filtering and optimal control , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[9]  Odd M. Faltinsen,et al.  INCORPORATION OF SEAKEEPING THEORIES IN CAD , 1990 .

[10]  M S Chislett,et al.  PLANAR MOTION MECHANISM TESTS AND FULL SCALE STEERING AND FULL SCALE STEERING MANEUVERING PREDICTIONS FOR A MARINER CLASS VESSEL , 1965 .

[11]  Asgeir J. Sørensen,et al.  DESIGN OF A DYNAMIC POSITIONING SYSTEM USING MODEL-BASED CONTROL , 1995 .

[12]  Thor I. Fossen,et al.  Passive nonlinear observer design for ships using Lyapunov methods: full-scale experiments with a supply vessel , 1999, Autom..

[13]  Edward V. Lewis,et al.  Principles of naval architecture , 1988 .

[14]  Peter Boese,et al.  Eine einfache Methode zur Berechnung der Widerstandserhöhung eines Schiffes im Seegang , 1970 .

[15]  Nils Salvesen,et al.  SHIP MOTIONS AND SEA LOADS , 1970 .

[16]  M A Abkowitz,et al.  LECTURES ON SHIP HYDRODYNAMICS--STEERING AND MANOEUVRABILITY , 1964 .

[17]  Olav Egeland,et al.  Frequency-Dependent Added Mass in Models for Controller Design for Wave Motion Damping , 2003 .

[18]  Volker Bertram,et al.  Practical Ship Hydrodynamics , 2000 .

[19]  Tristan Perez,et al.  A Discussion About Seakeeping and Manoeuvring Models For Surface Vessels , 2004 .

[20]  Fukuzo Tasai Hydrodynamic Force and Moment Produced by Swaying Oscillation of Cylinders on the Surface of a Fluid , 1961 .

[21]  W. E. Cummins,et al.  The Impulse Response Function and Ship Motion , 1962 .

[22]  Harald Keil Die hydrodynamischen Kräfte bei der periodischen Bewegung zweidimensionaler Körper an der Oberfläche flacher Gewässer , 1974 .

[23]  David F. Rogers,et al.  THE SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS , 1977 .

[24]  W Beukelman,et al.  Analysis of the resistance increase in waves of a fast cargo ship , 1972 .

[25]  W. Pierson,et al.  ON THE MOTIONS OF SHIPS IN CONFUSED SEAS , 1953 .

[26]  W. Frank OSCILLATION OF CYLINDERS IN OR BELOW THE FREE SURFACE OF DEEP FLUIDS , 1967 .

[27]  F. Ursell,et al.  ON THE HEAVING MOTION OF A CIRCULAR CYLINDER ON THE SURFACE OF A FLUID , 1949 .

[28]  Stuart Bennett,et al.  A History of Control Engineering 1800-1930 , 1979 .

[29]  Fukuzo Tasai,et al.  On the Damping Force and added Mass of Ships Heaving and Pitching , 1959 .

[30]  N H Norrbin,et al.  THEORY AND OBSERVATIONS ON THE USE OF A MATHEMATICAL MODEL FOR SHIP MANOEUVRING IN DEEP AND CONFINED WATERS , 1971 .

[31]  Thor I. Fossen,et al.  Guidance and control of ocean vehicles , 1994 .

[32]  Mogens Blanke,et al.  Rudder-Roll Damping Autopilot Robustness to Sway-Yaw-Roll Couplings , 1993 .

[33]  W. G. Price,et al.  On the use of Equilibrium Axes and Body Axes in the Dynamics of a Rigid Ship , 1981 .

[34]  Kensaku Nomoto,et al.  On the steering qualities of ships , 1956 .

[35]  Morton Gertler THE DTMB PLANAR MOTION MECHANISM SYSTEM , 1959 .

[36]  N H Norrbin ON THE DESIGN AND ANALYSIS OF THE ZIG-ZAG TEST ON BASE OF QUASI-LINEAR FREQUENCY RESPONSE , 1963 .

[37]  Michael J. Grimble,et al.  The design of dynamic ship positioning control systems using stochastic optimal control theory , 1980 .

[38]  Thor I. Fossen,et al.  Nonlinear Time-Domain Strip Theory Formulation for Low-Speed Manoeuvring and Station-Keeping , 2004 .

[39]  O. Faltinsen,et al.  Numerical predictions of ship motions at high forward speed , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[40]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[41]  A. T. Fuller,et al.  A History of Control Engineering 1800-1930 , 1979 .

[42]  Winnifred R. Jacobs,et al.  PITCHING AND HEAVING MOTIONS OF A SHIP IN REGULAR WAVES , 1957 .