Bistatic Synthetic Aperture Radar

Bistatic Synthetic Aperture Radar represents an active research and development area in radar technology. In addition, Bistatic and Multistatic SAR concepts are tightly related to formation flying and distributed space missions that also represent the new space-based remote sensing and surveillance frontiers. This chapter introduces Bistatic SAR, in particular by comparing its peculiarities, operation and performance with respect to conventional monostatic SAR. Some basic concepts of bistatic SAR image formation and the main elements of bistatic SAR geometry are preliminary presented. Performance parameters are then analyzed, including geometric resolution, radiometric resolution and bistatic radar equation. Special emphasis is placed on analytical methods to evaluate the effects of bistatic SAR geometry on image resolution. Further implementation issues, such as footprint, time and phase synchronization are also pointed out. The analysis of past bistatic radar and bistatic SAR experiments and proposed spaceborne bistatic SAR missions supplies essential information to understand how these issues have been faced and can be potentially solved in ongoing and future operational systems. Finally, several scientific applications of bistatic SAR are outlined taking advantages of different techniques and methods.

[1]  Didier Massonnet,et al.  Capabilities and limitations of the interferometric cartwheel , 2001, IEEE Trans. Geosci. Remote. Sens..

[2]  Ali Khenchaf,et al.  Bistatic scattering and depolarization by randomly rough surfaces: application to the natural rough surfaces in X-band , 2001 .

[3]  A. K. Fung,et al.  Incoherent bistatic scattering from the sea surface at L-band , 2001, IEEE Trans. Geosci. Remote. Sens..

[4]  Manuel Martín-Neira,et al.  The PARIS Ocean Altimeter In-Orbit Demonstrator , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[6]  G. L. Guttrich,et al.  Wide area surveillance concepts based on geosynchronous illumination and bistatic unmanned airborne vehicles or satellite reception , 1997, Proceedings of the 1997 IEEE National Radar Conference.

[7]  Roland Romeiser,et al.  Theoretical Evaluation of Several Possible Along-Track InSAR Modes of TerraSAR-X for Ocean Current Measurements , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[8]  K. Sarabandi,et al.  Simulation of bistatic scattering for assessing the application of existing communication satellites to remote sensing of rough surfaces , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[9]  James L. Garrison,et al.  Extraction of sea state and wind speed from reflected GPS signals: modeling and aircraft measurements , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[10]  J. Balke Field test of bistatic forward-looking synthetic aperture radar , 2005, IEEE International Radar Conference, 2005..

[11]  T. Toutin,et al.  State-of-the-art of extraction of elevation data using satellite SAR data , 2000 .

[12]  G. L. Tyler,et al.  Bistatic‐radar estimation of surface‐slope probability distributions with applications to the moon , 1973 .

[13]  Giancarmine Fasano,et al.  Analysis of Spaceborne Tandem Configurations for Complementing COSMO with SAR Interferometry , 2005, EURASIP J. Adv. Signal Process..

[14]  G. Tyler,et al.  Bistatic-Radar Observation of Long-Period, Directional Ocean-Wave Spectra with Loran A , 1970, Science.

[15]  D. C. Lorti,et al.  Spaceborne bistatic radar - an overview , 1986 .

[16]  Richard E. Carbone,et al.  Bistatic Microwave Probing of a Refractively Perturbed Clear Atmosphere , 1968 .

[17]  P. J. Rogers,et al.  The bistatic radar equation for randomly distributed targets , 1971 .

[18]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[19]  R. J. Doviak,et al.  Bistatic-Radar Detection of High-Altitude Clear-Air Atmospheric Targets , 1972 .

[20]  R. Simpson,et al.  Radar scattering laws for the lunar surface , 1982 .

[21]  Kenneth James,et al.  Topographic performance evaluation of the RADARSAT-2/3 tandem mission , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[22]  Brian D. Rigling,et al.  Three-dimensional surface reconstruction from multistatic SAR images , 2005, IEEE Transactions on Image Processing.

[23]  A. Moccia,et al.  Synthetic Aperture Radar for Earth Observation from a Lunar Base: Performance and Potential Applications , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[24]  M. Cherniakov,et al.  Bistatic radar : emerging technology , 2008 .

[25]  C. Wiley Synthetic Aperture Radars , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[26]  Jong-Sen Lee,et al.  Measurement of topography using polarimetric SAR images , 1996, IEEE Trans. Geosci. Remote. Sens..

[27]  Albert Aguasca,et al.  FIRST STEPS TOWARDS SINGLE-PASS INTERFEROMETRY BASED ON A BISTATIC FIXED RECEIVER SAR SYSTEM , 2006 .

[28]  Roberto Seu,et al.  Bistatic model of ocean scattering , 1998 .

[29]  G.P. Cardillo On the use of the gradient to determine bistatic SAR resolution , 1990, International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's.

[30]  D. Ross,et al.  On the detectability of ocean surface waves by real and synthetic aperture radar , 1981 .

[31]  Antonio Moccia,et al.  Effects of Orbit and Pointing Geometry of a Spaceborne Formation for Monostatic-Bistatic Radargrammetry on Terrain Elevation Measurement Accuracy , 2009, Sensors.

[32]  Antonio Moccia,et al.  Spaceborne along-track SAR interferometry: performance analysis and mission scenarios , 2001 .

[33]  Werner Alpers,et al.  The effect of orbital motions on synthetic aperture radar imagery of ocean waves , 1979 .

[34]  G. Yates,et al.  Bistatic SAR image formation , 2006 .

[35]  G. Krieger,et al.  ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets , 2006 .

[36]  Chris Baker,et al.  Bistatic radar using satellite-borne illuminators , 2002, RADAR 2002.

[37]  Thierry Toutin,et al.  Error tracking of radargrammetric DEM from RADARSAT images , 1999, IEEE Trans. Geosci. Remote. Sens..

[38]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Enrico Colzi,et al.  Study of a constellation of bistatic radar altimeters for mesoscale ocean applications , 1998, IEEE Trans. Geosci. Remote. Sens..

[40]  M. D. Grossi,et al.  Bistatic radar measurements of electrical properties of the Martian surface , 1977 .

[41]  G. Krieger,et al.  Spaceborne bi- and multistatic SAR: potential and challenges , 2006 .

[42]  C. Mikhail,et al.  Bistatic synthetic aperture radar with non-cooperative LEOS based transmitter , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[43]  G. Krieger,et al.  Impact of oscillator noise in bistatic and multistatic SAR , 2006, IEEE Geosci. Remote. Sens. Lett..

[44]  Thierry Toutin,et al.  State-of-the-art of elevation extraction from satellite SAR data , 2000 .

[45]  R. Stewart,et al.  Studies of the sea using HF radio scatter , 1977 .

[46]  F. Colone,et al.  From the expected scientific applications to the functional specifications, products and performance of the SABRINA missions , 2008, 2008 IEEE Radar Conference.

[47]  H. T. Howard,et al.  Dual‐frequency bistatic‐radar investigations of the Moon with Apollos 14 and 15 , 1973 .

[48]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[49]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[50]  Antonio Moccia,et al.  Performance of Stereoradargrammetric Methods Applied to Spaceborne Monostatic–Bistatic Synthetic Aperture Radar , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Joachim H. G. Ender,et al.  Bistatic SAR Experiments With PAMIR and TerraSAR-X—Setup, Processing, and Image Results , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[52]  R. Raney,et al.  Theory of synthetic aperture radar ocean imaging: A MARSEN view , 1985 .

[53]  Valery U. Zavorotny,et al.  Scattering of GPS signals from the ocean with wind remote sensing application , 2000, IEEE Trans. Geosci. Remote. Sens..

[54]  A. Fung,et al.  Microwave Remote Sensing Active and Passive-Volume III: From Theory to Applications , 1986 .

[55]  Joy,et al.  Oceanography-Synthetic aperture observations of directional height spectra for 7 s ocean waves , 1973 .

[56]  Martin Unwin,et al.  Detection and Processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[57]  A. I. Zakharov,et al.  BISTATIC RADAR AS A TOOL FOR EARTH INVESTIGATION USING SMALL SATELLITES , 1996 .

[58]  A. Moccia,et al.  Spaceborne bistatic Synthetic Aperture Radar for remote sensing applications , 2000 .

[59]  M. J. Grimble Youla parameterised two and a half degrees of freedom LQG controller and robustness improvement cost weighting , 1992 .

[60]  Richard A. Simpson,et al.  Spacecraft studies of planetary surfaces using bistatic radar , 1993, IEEE Trans. Geosci. Remote. Sens..

[61]  Gerhard Krieger,et al.  Bistatic TerraSAR-X/F-SAR Spaceborne–Airborne SAR Experiment: Description, Data Processing, and Results , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[62]  A. Moccia,et al.  Oceanographic applications of spaceborne bistatic SAR , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[63]  William J. Marinelli,et al.  The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration , 2010 .

[64]  Manuel Martín-Neira,et al.  The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals , 2001, IEEE Trans. Geosci. Remote. Sens..

[65]  C. W. Chen,et al.  Radar stereo- and interferometry-derived digital elevation models: comparison and combination using Radarsat and ERS-2 imagery , 2003 .

[66]  Mikhail Cherniakov,et al.  Results of a Space-Surface Bistatic SAR Image Formation Algorithm , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[67]  Ali Khenchaf,et al.  A methodology for modeling and simulating target echoes with a moving polarimetric bistatic radar , 2000 .

[68]  Tao Zeng,et al.  Generalized approach to resolution analysis in BSAR , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[69]  Gianfranco Fornaro,et al.  Imaging of Single and Double Scatterers in Urban Areas via SAR Tomography , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[70]  P. G. Tomlinson,et al.  Bistatic variants of space-based radar , 1997, 1997 IEEE Aerospace Conference.

[71]  M. P. Hartnett,et al.  Operations of an airborne bistatic adjunct to space based radar , 2003, Proceedings of the 2003 IEEE Radar Conference (Cat. No. 03CH37474).

[72]  Richard M. Goldstein,et al.  Studies of multibaseline spaceborne interferometric synthetic aperture radars , 1990 .

[73]  Antonio Moccia,et al.  Spatial Resolution of Bistatic Synthetic Aperture Radar: Impact of Acquisition Geometry on Imaging Performance , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[74]  Richard K. Moore,et al.  Radar remote sensing and surface scattering and emission theory , 1986 .

[75]  B. C. Barber,et al.  Theory of Digital Imaging from Orbital Synthetic Aperture Radar , 1983 .

[76]  H.D. Griffiths,et al.  New directions in bistatic radar , 2008, 2008 IEEE Radar Conference.

[77]  Cinzia Zuffada,et al.  First spaceborne observation of an Earth‐reflected GPS signal , 2002 .

[78]  Thierry Toutin,et al.  RADARSAT-2 stereoscopy and polarimetry for 3D mapping , 2004 .

[79]  Alberto Moreira,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 2000, IEEE Trans. Geosci. Remote. Sens..

[80]  A. Voronovich,et al.  Bistatic GPS signal reflections at various polarizations from rough land surface with moisture content , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[81]  Dario Tarchi,et al.  A ground-based parasitic SAR experiment , 2000, IEEE Trans. Geosci. Remote. Sens..

[82]  James K. Beard,et al.  Bistatic GMTI experiment for airborne platforms , 2000, Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037].

[83]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[84]  K. Hasselmann,et al.  On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion , 1991 .

[85]  Gerhard Krieger,et al.  Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying , 2010, Proceedings of the IEEE.

[86]  R. Goldstein,et al.  Interferometric radar measurement of ocean surface currents , 1987, Nature.

[87]  Claudio Prati,et al.  Improving slant-range resolution with multiple SAR surveys , 1993 .

[88]  Fawwaz T. Ulaby,et al.  Polarimetric bistatic-measurement facility for point and distributed targets , 1998 .

[89]  D. Massonnet,et al.  The interferometric cartwheel: A constellation of passive satellites to produce radar images to be coherently combined , 2001 .