Anisotropic assembly and reorganization of noble metals on black phosphorus van der waals template

[1]  Kwanpyo Kim,et al.  Commensurate Assembly of C60 on Black Phosphorus for Mixed-Dimensional van der Waals Transistors. , 2022, Small.

[2]  R. P. Wijesundera,et al.  Thermally Evaporated CdS/CdTe Thin Film Solar Cells: Optimization of CdCl2 Evaporation Treatment on Absorber Layer , 2021, Current applied physics.

[3]  H. Choi,et al.  Single-Crystalline Metallic Films Induced by van der Waals Epitaxy on Black Phosphorus , 2021, 2105.01210.

[4]  Kwanpyo Kim,et al.  Mechanical removal of surface residues on graphene for TEM characterizations , 2020, Applied Microscopy.

[5]  Kwanpyo Kim,et al.  Light-Induced Anisotropic Morphological Dynamics of Black Phosphorus Membranes Visualized by Dark-Field Ultrafast Electron Microscopy. , 2020, ACS nano.

[6]  D. Akinwande,et al.  Recent Progress on Stability and Passivation of Black Phosphorus , 2018, Advanced materials.

[7]  Anna C. Domask,et al.  Room Temperature van der Waals Epitaxy of Metal Thin Films on Molybdenum Disulfide , 2018 .

[8]  C. N. Lau,et al.  Integer and Fractional Quantum Hall effect in Ultrahigh Quality Few-layer Black Phosphorus Transistors. , 2018, Nano letters.

[9]  Won Chul Lee,et al.  Self-organized growth and self-assembly of nanostructures on 2D materials , 2017 .

[10]  Jared M. Johnson,et al.  Remote epitaxy through graphene enables two-dimensional material-based layer transfer , 2017, Nature.

[11]  N. Zhang,et al.  Graphene and its derivatives as versatile templates for materials synthesis and functional applications. , 2017, Nanoscale.

[12]  Kwanpyo Kim,et al.  Atomic-scale imaging of few-layer black phosphorus and its reconstructed edge , 2017, 1701.09038.

[13]  A. Kirkland,et al.  Atomic Structure and Dynamics of Epitaxial 2D Crystalline Gold on Graphene at Elevated Temperatures. , 2016, ACS nano.

[14]  Xinfa Chen,et al.  Resolving and Tuning Mechanical Anisotropy in Black Phosphorus via Nanomechanical Multimode Resonance Spectromicroscopy. , 2016, Nano letters.

[15]  Farzad Mashayek,et al.  Selective Ionic Transport Pathways in Phosphorene. , 2016, Nano letters.

[16]  Zuocheng Zhang,et al.  Direct observation of the layer-dependent electronic structure in phosphorene. , 2016, Nature nanotechnology.

[17]  Kai Liu,et al.  Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K , 2015, Nature Communications.

[18]  Hyeonsik Cheong,et al.  Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. , 2015, Nanoscale.

[19]  Chongwu Zhou,et al.  Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus. , 2015, ACS nano.

[20]  H. Choi,et al.  Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus , 2015, Science.

[21]  L. Li,et al.  Quantum Hall effect in black phosphorus two-dimensional electron system. , 2015, Nature nanotechnology.

[22]  Gang Zhang,et al.  Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. , 2015, Nano letters.

[23]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[24]  Li Yang,et al.  Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. , 2014, Nano letters.

[25]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[26]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[27]  Gang Wang,et al.  The transformation of a gold film on few-layer graphene to produce either hexagonal or triangular nanoparticles during annealing , 2013 .

[28]  Norbert Kaiser,et al.  Review of the fundamentals of thin-film growth. , 2002, Applied optics.

[29]  A. Prodan,et al.  Anisotropic growth of Au and Ag on (001) WTe2 and β-MoTe2 surfaces between 350 and 700 K , 1998 .

[30]  A. Prodan,et al.  Nucleation and growth of noble metals on transition-metal di-tellurides , 1997 .

[31]  Zhang,et al.  Atomistic Processes in the Early Stages of Thin-Film Growth , 1997, Science.

[32]  Jensen,et al.  Deposition, diffusion, and aggregation of atoms on surfaces: A model for nanostructure growth. , 1994, Physical review. B, Condensed matter.

[33]  B. Parkinson,et al.  An investigation of the growth of Au and Cu on the van der waals surfaces of MoTe2 and WTe2 , 1989 .

[34]  Pandey,et al.  Energetics of defects and diffusion mechanisms in graphite. , 1988, Physical review letters.

[35]  W. Ruland,et al.  X-ray determination of crystallinity and diffuse disorder scattering , 1961 .

[36]  Anna C. Domask,et al.  Room-temperature epitaxy of metal thin films on tungsten diselenide , 2019, Journal of Crystal Growth.

[37]  Peter W Voorhees,et al.  The theory of Ostwald ripening , 1985 .