Interactive Image Segmentation From A Feedback Control Perspective

Image segmentation is a fundamental problem in computational vision and medical imaging. Designing a generic, automated method that works for various objects and imaging modalities is a formidable task. Instead of proposing a new specific segmentation algorithm, we present a general design principle on how to integrate user interactions from the perspective of feedback control theory. Impulsive control and Lyapunov stability analysis are employed to design and analyze an interactive segmentation system. Then stabilization conditions are derived to guide algorithm design. Finally, the effectiveness and robustness of proposed method are demonstrated.

[1]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[2]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[3]  M. Jankovic,et al.  Extension of control Lyapunov functions to time-delay systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[4]  Jianfei Cai,et al.  Robust Interactive Image Segmentation Using Convex Active Contours , 2012, IEEE Transactions on Image Processing.

[5]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[6]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[7]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[8]  Tao Yang,et al.  In: Impulsive control theory , 2001 .

[9]  Scott Cohen,et al.  Geodesic graph cut for interactive image segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Sang Hyun Park,et al.  Data-Driven Interactive 3D Medical Image Segmentation Based on Structured Patch Model , 2013, IPMI.

[11]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[12]  Daniel Cremers,et al.  A probabilistic level set formulation for interactive organ segmentation , 2007, SPIE Medical Imaging.

[13]  Carlos Vázquez,et al.  Image segmentation as regularized clustering: a fully global curve evolution method , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[14]  Miroslav Krstic,et al.  Stabilization of a System of $n+1$ Coupled First-Order Hyperbolic Linear PDEs With a Single Boundary Input , 2013, IEEE Transactions on Automatic Control.

[15]  Vladimir Kolmogorov,et al.  "GrabCut": interactive foreground extraction using iterated graph cuts , 2004, ACM Trans. Graph..

[16]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[17]  William A. Barrett,et al.  Interactive Segmentation with Intelligent Scissors , 1998, Graph. Model. Image Process..

[18]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Level Set Segmentation with Multiple Regions Level Set Segmentation with Multiple Regions , 2022 .

[19]  Andrew Blake,et al.  Geodesic star convexity for interactive image segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[21]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[22]  Jean-Philippe Thiran,et al.  Non-Euclidean image-adaptive Radial Basis Functions for 3D interactive segmentation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[23]  David Zhang,et al.  A survey of graph theoretical approaches to image segmentation , 2013, Pattern Recognit..

[24]  P.V. Kokotovic,et al.  The joy of feedback: nonlinear and adaptive , 1992, IEEE Control Systems.

[25]  Xianghua Xie,et al.  An Overview on Interactive Medical Image Segmentation , 2013 .

[26]  Danijela Ristic-Durrant,et al.  Closed-Loop Control in Image Processing for Improvement of Object Recognition , 2008 .

[27]  M. Krstić,et al.  On global stabilization of Burgers' equation by boundary control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[28]  Nahum Kiryati,et al.  Interactive level set segmentation for image-guided therapy , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[29]  Daniel Cremers,et al.  Spatially Varying Color Distributions for Interactive Multilabel Segmentation , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[31]  Martha Elizabeth Shenton,et al.  A 3D interactive multi-object segmentation tool using local robust statistics driven active contours , 2012, Medical Image Anal..

[32]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[33]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[34]  Patricio A. Vela,et al.  Interactive Medical Image Segmentation using PDE Control of Active Contours , 2013, IEEE Transactions on Medical Imaging.

[35]  George Tziritas,et al.  Fast Marching Techniques for Visual Grouping & Segmentation , 2003 .

[36]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[37]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[38]  Francis Clarke,et al.  Lyapunov functions and discontinuous stabilizing feedback , 2011, Annu. Rev. Control..

[39]  Vladimir Vezhnevets,et al.  “GrowCut” - Interactive Multi-Label N-D Image Segmentation By Cellular Automata , 2005 .

[40]  Alexandre X. Falcão,et al.  Interactive volume segmentation with differential image foresting transforms , 2004, IEEE Transactions on Medical Imaging.

[41]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[42]  Heinz-Otto Peitgen,et al.  Interactive 3D medical image segmentation with energy-minimizing implicit functions , 2011, Comput. Graph..

[43]  Yogesh Rathi,et al.  Image Segmentation Using Active Contours Driven by the Bhattacharyya Gradient Flow , 2007, IEEE Transactions on Image Processing.

[44]  H. Marquez Nonlinear Control Systems: Analysis and Design , 2003, IEEE Transactions on Automatic Control.

[45]  Wenxian Yang,et al.  User-Friendly Interactive Image Segmentation Through Unified Combinatorial User Inputs , 2010, IEEE Transactions on Image Processing.

[46]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[47]  Dan Wang,et al.  Active Learning for Interactive Segmentation with Expected Confidence Change , 2012, ACCV.

[48]  A. Dervieux,et al.  A finite element method for the simulation of a Rayleigh-Taylor instability , 1980 .

[49]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[50]  Bir Bhanu,et al.  Adaptive image segmentation using a genetic algorithm , 1989, IEEE Transactions on Systems, Man, and Cybernetics.

[51]  Carlos Vázquez,et al.  Joint multiregion segmentation and parametric estimation of image motion by basis function representation and level set evolution , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Hanchuan Peng,et al.  V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets , 2010, Nature Biotechnology.

[53]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[54]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[55]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[56]  Andrew Blake,et al.  GeoS: Geodesic Image Segmentation , 2008, ECCV.

[57]  Yiyong Sun,et al.  Interactive Graph-Based Segmentation Methods in Cardiovascular Imaging , 2006, Handbook of Mathematical Models in Computer Vision.

[58]  Guillermo Sapiro,et al.  Geodesic Matting: A Framework for Fast Interactive Image and Video Segmentation and Matting , 2009, International Journal of Computer Vision.

[59]  Laurent D. Cohen,et al.  Global Minimum for Active Contour Models: A Minimal Path Approach , 1997, International Journal of Computer Vision.

[60]  Stephen Grossberg,et al.  Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world , 2013, Neural Networks.

[61]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[62]  Michael Y. Li,et al.  Global-stability problem for coupled systems of differential equations on networks , 2010 .

[63]  Anmar Khadra,et al.  Impulsive control and synchronization of spatiotemporal chaos , 2005 .

[64]  Anthony J. Yezzi,et al.  A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations , 2002, J. Vis. Commun. Image Represent..

[65]  William A. Barrett,et al.  Interactive segmentation of image volumes with Live Surface , 2007, Comput. Graph..

[66]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[67]  Daniel Cremers,et al.  TVSeg - Interactive Total Variation Based Image Segmentation , 2008, BMVC.

[68]  Allen R. Tannenbaum,et al.  Localizing Region-Based Active Contours , 2008, IEEE Transactions on Image Processing.

[69]  Ross T. Whitaker,et al.  A Level-Set Approach to 3D Reconstruction from Range Data , 1998, International Journal of Computer Vision.