Towards an Auto-Associative Topology State Estimator

This paper presents a model for breaker status identification and power system topology estimation based on a mosaic of local auto-associative neural networks. The approach extracts information from values of the analog electric variables and allows the recovery of missing sensor signals or the correction of erroneous data about breaker status. The results are confirmed by extensive tests conducted on an IEEE benchmark network.

[1]  João Tomé Saraiva,et al.  FUZZY CONTROL OF STATE ESTIMATION ROBUSTNESS , 2002 .

[2]  R.J. Marks,et al.  On the contractive nature of autoencoders: application to missing sensor restoration , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[3]  Probability Subcommittee,et al.  IEEE Reliability Test System , 1979, IEEE Transactions on Power Apparatus and Systems.

[4]  O. Alsaç,et al.  Generalized state estimation , 1998 .

[5]  K. Clements,et al.  A topology error identification method directly based on collinearity tests , 2006, 2005 IEEE Russia Power Tech.

[6]  O. Alsac,et al.  Topology estimation , 2005, IEEE Power Engineering Society General Meeting, 2005.

[7]  A.P. Alves da Silva,et al.  A pattern analysis approach for topology determination, bad data correction and missing measurement estimation in power systems , 1990, Proceedings of the Twenty-Second Annual North American Power Symposium.

[8]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[9]  Tshilidzi Marwala,et al.  The use of genetic algorithms and neural networks to approximate missing data in database , 2005, IEEE 3rd International Conference on Computational Cybernetics, 2005. ICCC 2005..

[10]  R.J. Marks,et al.  Set constraint discovery: missing sensor data restoration using autoassociative regression machines , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[11]  K. Clements,et al.  Bayesian-based hypothesis testing for topology error identification in generalized state estimation , 2004, IEEE Transactions on Power Systems.

[12]  Anjan Bose,et al.  Transition to a Two-Level Linear State Estimator—Part II: Algorithm , 2011, IEEE Transactions on Power Systems.

[13]  Hongbin Sun,et al.  Transition to a Two-Level Linear State Estimator—Part I: Architecture , 2011, IEEE Transactions on Power Systems.

[14]  Rafael Paiva Tavares Diagnosing faults in power transformers with autoassociative neural networks and mean shift , 2012 .

[15]  A. M. Leite da Silva,et al.  Online topology determination and bad data suppression in power system operation using artificial neural networks , 1997, Proceedings of the 20th International Conference on Power Industry Computer Applications.

[16]  S. C. Srivastava,et al.  Topology processing and static state estimation using artificial neural networks , 1996 .

[17]  A. Abur,et al.  Breaker Status Identification , 2010, IEEE Transactions on Power Systems.

[18]  A.P. Alves da Silva,et al.  Neural networks for topology determination of power systems , 1991, Proceedings of the First International Forum on Applications of Neural Networks to Power Systems.

[19]  Grantham K. H. Pang,et al.  Solving data acquisition and processing problems in power systems using a pattern analysis approach , 1991 .

[20]  K. A. Clements,et al.  Topology error identification using normalized Lagrange multipliers , 1998 .

[21]  Anjan Bose,et al.  Smart Transmission Grid Applications and Their Supporting Infrastructure , 2010, IEEE Transactions on Smart Grid.

[22]  Terrence J. Sejnowski,et al.  Sex Recognition from Faces Using Neural Networks , 1995 .

[23]  J. P. Pandey,et al.  Topology identification, bad data processing, and state estimation using fuzzy pattern matching , 2005, IEEE Transactions on Power Systems.

[24]  V. Miranda,et al.  Reconstructing Missing Data in State Estimation With Autoencoders , 2012, IEEE Transactions on Power Systems.