MILP formulations for single- and multi-mode resource-constrained project scheduling problems

Abstract This work presents new mixed-integer linear programming models for the deterministic single- and multi-mode resource constrained project scheduling problem with renewable and non-renewable resources. The modeling approach relies on the Resource-Task Network (RTN) representation, a network representation technique used in process scheduling problems, based on continuous time models. First, we propose new RTN-based network representation methods, and then we efficiently transform them into mathematical formulations including a set of constraints describing precedence relations and different types of resources. Finally, the applicability of the proposed formulations is illustrated using several example problems under the most commonly addressed objective, the makespan minimization.

[1]  F. Glover IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .

[2]  Ignacio E. Grossmann,et al.  Optimal resource investment and scheduling of tests for new product development , 2004, Comput. Chem. Eng..

[3]  Philip M. Wolfe,et al.  Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach , 1969 .

[4]  V. Maniezzo,et al.  An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation , 1998 .

[5]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[6]  Erik Demeulemeester,et al.  Minimizing resource availability costs in time-limited project networks , 1995 .

[7]  Rainer Kolisch,et al.  Project Scheduling Under Partially Renewable Resource Constraints , 1999 .

[8]  Richard E. Rosenthal,et al.  GAMS -- A User's Guide , 2004 .

[9]  Rainer Kolisch,et al.  Efficient priority rules for the resource-constrained project scheduling problem , 1996 .

[10]  James Evans,et al.  Optimization algorithms for networks and graphs , 1992 .

[11]  Christos T. Maravelias,et al.  Scheduling of testing tasks and resource planning in new product development using stochastic programming , 2009, Comput. Chem. Eng..

[12]  Sönke Hartmann,et al.  A survey of variants and extensions of the resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[13]  Alf Kimms,et al.  Optimization guided lower and upper bounds for the resource investment problem , 2001, J. Oper. Res. Soc..

[14]  Howard Eisner A Generalized Network Approach to the Planning and Scheduling of a Research Project , 1962 .

[15]  Christos T. Maravelias,et al.  A stochastic programming approach for clinical trial planning in new drug development , 2008, Comput. Chem. Eng..

[16]  Marcel Mongeau,et al.  Event-based MILP models for resource-constrained project scheduling problems , 2011, Comput. Oper. Res..

[17]  Gang Yu,et al.  A Branch-and-Cut Procedure for the Multimode Resource-Constrained Project-Scheduling Problem , 2006, INFORMS J. Comput..

[18]  Roman Słowiński,et al.  Two Approaches to Problems of Resource Allocation Among Project Activities — A Comparative Study , 1980 .

[19]  Ulrich Derigs,et al.  A model, heuristic procedure and decision support system for solving the movie shoot scheduling problem , 2008, OR Spectr..

[20]  Majid Sabzehparvar,et al.  A mathematical model for the multi-mode resource-constrained project scheduling problem with mode dependent time lags , 2008, The Journal of Supercomputing.

[21]  Christos T. Maravelias,et al.  Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming , 2010, Eur. J. Oper. Res..

[22]  A. Barbosa‐Póvoa,et al.  An Improved RTN Continuous-Time Formulation for the Short-term Scheduling of Multipurpose Batch Plants , 2001 .

[23]  Rainer Kolisch,et al.  Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem , 2000, Eur. J. Oper. Res..

[24]  Juan Camilo Zapata,et al.  The multimode resource constrained multiproject scheduling problem: Alternative formulations , 2008 .

[25]  Rainer Kolisch,et al.  PSPLIB - a project scheduling problem library , 1996 .

[26]  Vipul Jain,et al.  Resource-Constrained Scheduling of Tests in New Product Development , 1999 .

[27]  Willy Herroelen,et al.  Project Scheduling—Theory and Practice , 2005 .

[28]  J. M. Tamarit,et al.  Project scheduling with resource constraints: A branch and bound approach , 1987 .

[29]  F. Brian Talbot,et al.  Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: The Nonpreemptive Case , 1982 .

[30]  Jan Węglarz,et al.  A knowledge—based multiobjective project scheduling system , 1994 .

[31]  Ramón Alvarez-Valdés Olaguíbel,et al.  The project scheduling polyhedron: Dimension, facets and lifting theorems , 1993 .

[32]  N. Shah,et al.  Strategic Supply Chain Optimization for the Pharmaceutical Industries , 2001 .

[33]  C. Pantelides,et al.  A simple continuous-time process scheduling formulation and a novel solution algorithm , 1996 .

[34]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[35]  Ignacio E. Grossmann,et al.  Optimization Models for the Scheduling of Testing Tasks in New Product Development , 1996 .

[36]  Rema Padman,et al.  An integrated survey of deterministic project scheduling , 2001 .

[37]  Lazaros G. Papageorgiou,et al.  A hierarchical solution approach for multi-site capacity planning under uncertainty in the pharmaceutical industry , 2004, Comput. Chem. Eng..

[38]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[39]  A. Barbosa‐Póvoa,et al.  Simple Continuous-Time Formulation for Short-Term Scheduling of Batch and Continuous Processes , 2004 .

[40]  Christian Artigues,et al.  Insertion techniques for static and dynamic resource-constrained project scheduling , 2003, Eur. J. Oper. Res..

[41]  A. H. Russell Cash Flows in Networks , 1970 .