Phase Curves of Kuiper Belt Objects, Centaurs, and Jupiter-family Comets from the ATLAS Survey

The Kuiper Belt objects (KBOs), the Centaurs, and the Jupiter-family comets (JFCs) form an evolutionary continuum of small outer solar system objects, and their study allows us to gain insight into the history and evolution of the solar system. Broadband photometry can be used to measure their phase curves, allowing a first-order probe into the surface properties of these objects, though limited telescope time makes measuring accurate phase curves difficult. We make use of serendipitous broadband photometry from the long-baseline, high-cadence Asteroid Terrestrial-impact Last Alert System survey to measure the phase curves for a sample of 18 KBOs, Centaurs, and JFCs with unprecedentedly large data sets. We find phase curves with previously reported negative slopes become positive with increased data and are thus due to insufficient sampling of the phase-curve profile, and not a real physical effect. We search for correlations between phase-curve parameters, finding no strong correlations between any parameter pair, consistent with the findings of previous studies. We search for instances of cometary activity in our sample, finding a previously reported outburst by Echeclus and a new epoch of increased activity by Chiron. Applying the main belt asteroid HG 1 G 2 phase-curve model to three JFCs in our sample with large phase angle spans, we find their slope parameters imply surfaces more consistent with those of carbonaceous main belt asteroids than silicaceous ones.

[1]  A. Alvarez-Candal,et al.  Absolute colors and phase coefficients of asteroids , 2022, Astronomy & Astrophysics.

[2]  D. Kuroda,et al.  A polarimetric study of asteroids in comet-like orbits , 2021, Astronomy & Astrophysics.

[3]  B. Hapke Bidirectional reflectance spectroscopy 8. The angular width of the opposition effect in regolith-like media , 2021 .

[4]  Michael L. Waskom,et al.  Seaborn: Statistical Data Visualization , 2021, J. Open Source Softw..

[5]  L. Denneau,et al.  Asteroid phase curves from ATLAS dual-band photometry , 2020, Icarus.

[6]  D. Young,et al.  New or Increased Cometary Activity in (2060) 95P/Chiron , 2021, Research Notes of the AAS.

[7]  Andrew C. Roberts,et al.  Dynamics of small bodies in orbits between Jupiter and Saturn , 2020, 2011.01416.

[8]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[9]  B. Stalder,et al.  Design and Operation of the ATLAS Transient Science Server , 2020, Publications of the Astronomical Society of the Pacific.

[10]  D. Trilling,et al.  Cometary Activity Discovered on a Distant Centaur: A Nonaqueous Sublimation Mechanism , 2020, The Astrophysical Journal.

[11]  H. Flewelling,et al.  Investigating Taxonomic Diversity within Asteroid Families through ATLAS Dual-band Photometry , 2020, The Astrophysical Journal Supplement Series.

[12]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[13]  Nicolas Thomas,et al.  TNOs are Cool: A Survey of the Transneptunian Region , 2008, Astronomy & Astrophysics.

[14]  V. Reddy,et al.  Physical Characterization of the 2017 December Outburst of the Centaur 174P/Echeclus , 2019, The Astronomical Journal.

[15]  D. Tholen,et al.  Phase Curves from the Kuiper Belt: Photometric Properties of Distant Kuiper Belt Objects Observed by New Horizons , 2019, The Astronomical Journal.

[16]  G. Sarid,et al.  29P/Schwassmann–Wachmann 1, A Centaur in the Gateway to the Jupiter-family Comets , 2019, The Astrophysical Journal.

[17]  J. Ortiz,et al.  Absolute colours and phase coefficients of trans-Neptunian objects: correlations and populations , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  Michael Mommert,et al.  sbpy: A Python module for small-body planetary astronomy , 2019, J. Open Source Softw..

[19]  J. Ortiz,et al.  Long-term photometric monitoring of the dwarf planet (136472) Makemake , 2019, Astronomy & Astrophysics.

[20]  A. Fitzsimmons,et al.  174P/Echeclus and Its Blue Coma Observed Post-outburst , 2018, The Astronomical Journal.

[21]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[22]  Richard P. Binzel,et al.  K2 precision lightcurve: Twelve days in the Pluto-Charon system , 2018, Icarus.

[23]  B. Stalder,et al.  The ATLAS All-Sky Stellar Reference Catalog , 2018, The Astrophysical Journal.

[24]  J. Ortiz,et al.  Absolute colours and phase coefficients of trans-Neptunian objects: HV − HR and relative phase coefficients , 2018, Monthly Notices of the Royal Astronomical Society.

[25]  S. Green,et al.  Implications of the small spin changes measured for large Jupiter-family comet nuclei , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[27]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[28]  J. Vanderplas Understanding the Lomb–Scargle Periodogram , 2017, 1703.09824.

[29]  F. Henry,et al.  “TNOs are Cool”: A survey of the trans-Neptunian region , 2010, Astronomy & Astrophysics.

[30]  J. Ortiz,et al.  Size and Shape of Chariklo from Multi-epoch Stellar Occultations , 2017, 1708.08934.

[31]  S. F. Green,et al.  Rotation of cometary nuclei: new light curves and an update of the ensemble properties of Jupiter-family comets , 2017, 1707.02133.

[32]  Y. Krugly,et al.  Refining the asteroid taxonomy by polarimetric observations , 2017 .

[33]  G. Sarid,et al.  CO and Other Volatiles in Distantly Active Comets , 2016, 1611.00051.

[34]  J. Ortiz,et al.  Physical properties of centaur (54598) Bienor from photometry , 2016, 1612.02626.

[35]  J. Petit,et al.  A long-term follow up of 174P/Echeclus , 2016 .

[36]  G. Carraro,et al.  Photometry of Centaurs and trans-Neptunian objects: 2060 Chiron (1977 UB), 10199 Chariklo (1997 CU26), 38628 Huya (2000 EB173), 28978 Ixion (2001 KX76), and 90482 Orcus (2004 DW) , 2016, 1605.08251.

[37]  K. Muinonen,et al.  H, G1, G2 photometric phase function extended to low-accuracy data , 2016 .

[38]  A. Vagnozzi,et al.  New and updated convex shape models of asteroids based on optical data from a large collaboration network , 2015, 1510.07422.

[39]  J. Ortiz,et al.  Absolute magnitudes and phase coefficients of trans-Neptunian objects , 2015, 1511.09401.

[40]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[41]  Y. Jiménez-Teja,et al.  The Centaur 10199 Chariklo: investigation into rotational period, absolute magnitude, and cometary activity , 2014 .

[42]  J. Ortiz,et al.  Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt , 2014, 1407.1214.

[43]  J. Stansberry,et al.  The Size and Shape of the Oblong Dwarf Planet Haumea , 2014, 1402.4456.

[44]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[45]  J. Licandro,et al.  Thermal properties, sizes, and size distribution of Jupiter-family cometary nuclei , 2013, 1307.6191.

[46]  J. Castillo‐Rogez,et al.  The science of solar system ices , 2013 .

[47]  B. Hapke Bidirectional reflectance spectroscopy 7: The single particle phase function hockey stick relation , 2012 .

[48]  Michael E. Brown,et al.  The Compositions of Kuiper Belt Objects , 2011, 1112.2764.

[49]  A. Cikota,et al.  A mid-term astrometric and photometric study of trans-Neptunian object (90482) Orcus , 2010, 1010.6187.

[50]  Karri Muinonen,et al.  A three-parameter magnitude phase function for asteroids , 2010 .

[51]  J. Bauer,et al.  Methane, ammonia, and their irradiation products at the surface of an intermediate-size KBO? A portrait of Plutino (90482) Orcus , 2010, 1006.4962.

[52]  J. Ortiz,et al.  Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs , 2010, 1004.4841.

[53]  Eliot F. Young,et al.  PLUTO AND CHARON WITH THE HUBBLE SPACE TELESCOPE. I. MONITORING GLOBAL CHANGE AND IMPROVED SURFACE PROPERTIES FROM LIGHT CURVES , 2010 .

[54]  A. Heinze,et al.  THE ROTATION PERIOD AND LIGHT-CURVE AMPLITUDE OF KUIPER BELT DWARF PLANET 136472 MAKEMAKE (2005 FY9) , 2009 .

[55]  B. Schaefer,et al.  THE DIVERSE SOLAR PHASE CURVES OF DISTANT ICY BODIES II. THE CAUSE OF THE OPPOSITION SURGES AND THEIR CORRELATIONS , 2008, 0810.0965.

[56]  B. Hapke Bidirectional reflectance spectroscopy: 6. Effects of porosity , 2008 .

[57]  B. Schaefer,et al.  Pluto's light curve in 1933–1934 , 2008, 0805.2097.

[58]  Kathryn Volk,et al.  The Scattered Disk as the Source of the Jupiter Family Comets , 2008, 0802.3913.

[59]  D. Jewitt,et al.  HIGH-PRECISION PHOTOMETRY OF EXTREME KBO 2003 EL61 , 2008, 0801.4124.

[60]  Roman V. Baluev,et al.  Assessing the statistical significance of periodogram peaks , 2007, 0711.0330.

[61]  Karri Muinonen,et al.  Surface Properties of Kuiper Belt Objects and Centaurs from Photometry and Polarimetry , 2008 .

[62]  B. G. Marsden,et al.  Nomenclature in the Outer Solar System , 2008 .

[63]  L. Jones,et al.  The Orbital and Spatial Distribution of the Kuiper Belt , 2008 .

[64]  Scott S. Sheppard,et al.  Light Curves of Dwarf Plutonian Planets and other Large Kuiper Belt Objects: Their Rotations, Phase Functions, and Absolute Magnitudes , 2007, 0704.1636.

[65]  R. Roy,et al.  Physical models of ten asteroids from an observers' collaboration network , 2007 .

[66]  Michael E. Brown,et al.  Volatile Loss and Retention on Kuiper Belt Objects , 2007 .

[67]  D. Jewitt THE ACTIVE CENTAURS , 2006, 0902.4687.

[68]  B. Schaefer,et al.  The Diverse Solar Phase Curves of Distant Icy Bodies. I. Photometric Observations of 18 Trans-Neptunian Objects, 7 Centaurs, and Nereid , 2006, astro-ph/0605745.

[69]  C. Trujillo,et al.  The Surface of 2003 EL61 in the Near-Infrared , 2006, astro-ph/0601618.

[70]  K. Muinonen,et al.  Exploring the surface properties of transneptunian objects and Centaurs with polarimetric FORS1/VLT observations , 2006, astro-ph/0601414.

[71]  C. Trujillo,et al.  Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-sized Object in the Kuiper Belt , 2005, astro-ph/0509401.

[72]  Ernesto Oliva,et al.  The methane ice rich surface of large TNO 2005 FY9: a Pluto-twin in the trans-neptunian belt? , 2006 .

[73]  David Jewitt,et al.  The Solar System Beyond The Planets , 2006 .

[74]  M. E. Brown,et al.  Discovery of a Planetary-sized Object in the Scattered Kuiper Belt , 2005, astro-ph/0508633.

[75]  F. Poulet,et al.  Photometric study of Centaur (60558) 2000 EC98 and trans-neptunian object (55637) 2002 UX25 at different phase angles , 2005 .

[76]  G. Bernstein,et al.  The Size Distribution of Trans-Neptunian Bodies , 2003, astro-ph/0308467.

[77]  J. Ortiz,et al.  Rotational brightness variations in Trans-Neptunian Object 50000 Quaoar , 2003 .

[78]  Matthew S. Tiscareno,et al.  The Dynamics of Known Centaurs , 2002, astro-ph/0211076.

[79]  R. Duffard,et al.  New Activity of Chiron: Results from 5 Years of Photometric Monitoring☆ , 2002 .

[80]  J. Piironen,et al.  The Opposition Effect and Negative Polarization of Structural Analogs for Planetary Regoliths , 2002 .

[81]  B. Schaefer,et al.  Photometric Light Curve for the Kuiper Belt Object 2000 EB173 on 78 Nights , 2002, astro-ph/0208261.

[82]  Bruce Hapke,et al.  Bidirectional Reflectance Spectroscopy: 5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering , 2002 .

[83]  J. Ortiz,et al.  Lightcurves of Centaurs 2000?QC 243 and 2001?PT 13 , 2002 .

[84]  D. Jewitt,et al.  Time-resolved Photometry of Kuiper Belt Objects: Rotations, Shapes, and Phase Functions , 2002, astro-ph/0205392.

[85]  Linda J. Spilker,et al.  The Opposition Effect in Simulated Planetary Regoliths. Reflectance and Circular Polarization Ratio Change at Small Phase Angle , 2000 .

[86]  Guido Rossum,et al.  Python Library Reference , 1999 .

[87]  Harold F. Levison,et al.  From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets☆ , 1997 .

[88]  A. Harris,et al.  PHOTOMETRIC OBSERVATIONS OF 125 ASTEROIDS , 1997 .

[89]  David J. Tholen,et al.  The Orbit of Charon , 1997 .

[90]  B. Sicardy,et al.  Jet-like features near the nucleus of Chiron , 1995, Nature.

[91]  Marc W. Buie,et al.  Separate Lightcurves of Pluto and Charon , 1997 .

[92]  David J. Tholen,et al.  Pluto's Lightcurve: Results from Four Oppositions , 1994 .

[93]  B. Buratti,et al.  CCD Photometry of 2060 Chiron in 1985 and 1991 , 1993 .

[94]  Harold F. Levison,et al.  The Long-Term Dynamical Behavior of Short-Period Comets , 1993 .

[95]  A. Fitzsimmons,et al.  Differential CCD photometry of Dubiago, Chiron and Hektor , 1991 .

[96]  D. Jewitt,et al.  Cometary activity in 2060 Chiron , 1990 .

[97]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[98]  R. P. Binzel,et al.  Photometry of Pluto during the 1983 opposition - A new determination of the phase coefficient , 1984 .

[99]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[100]  B. Hapke An Improved Theoretical Lunar Photometric Function. , 1966 .

[101]  B. Hapke Theoretical Photometric Function for the Lunar Surface. , 1963 .