Second-Derivative Sequential Quadratic Programming Methods for Nonlinear Optimization

Author(s): Kungurtsev, Vyacheslav | Abstract: Sequential Quadratic Programming (SQP) methods are a popular and successful class of methods for minimizing a generally nonlinear function subject to nonlinear constraints. Under a standard set of assumptions, conventional SQP methods exhibit a fast rate of local convergence. However, in practice, a conventional SQP method involves solving an indefinite quadratic program (QP), which is NP hard in general. As a result, approximations to the second-derivatives are often used, which can slow the rate of local convergence and reduce the chance that the algorithm will converge to a local minimizer instead of a saddle point. In addition, the standard assumptions required for convergence often do not hold in practice. For such problems, regularized SQP methods, which also require second-derivatives, have been shown to have good local convergence properties; however, there are few regularized SQP methods that exhibit convergence to a minimizer from an arbitrary initial starting point. This thesis considers the formulation, analysis and implementation of SQP methods with the following properties. (i) The solution of an indefinite QP is not required. (ii) Regularization is performed in such a way that global convergence can be established under standard assumptions. (iii) Implementations of the method work well on degenerate problems

[1]  Javier M. Moguerza,et al.  An augmented Lagrangian interior-point method using directions of negative curvature , 2003, Math. Program..

[2]  J. J. Moré,et al.  Newton's Method , 1982 .

[3]  Francisco Facchinei,et al.  On the Accurate Identification of Active Constraints , 1998, SIAM J. Optim..

[4]  Stephen M. Robinson,et al.  Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms , 1974, Math. Program..

[5]  Paulo J. S. Silva,et al.  A relaxed constant positive linear dependence constraint qualification and applications , 2011, Mathematical Programming.

[6]  J. M. Martínez,et al.  On second-order optimality conditions for nonlinear programming , 2007 .

[7]  Garth P. McCormick,et al.  A modification of Armijo's step-size rule for negative curvature , 1977, Math. Program..

[8]  R. Andreani,et al.  Constant-Rank Condition and Second-Order Constraint Qualification , 2010 .

[9]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[10]  Jacques Gauvin,et al.  A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming , 1977, Math. Program..

[11]  C. Lemaréchal,et al.  The watchdog technique for forcing convergence in algorithms for constrained optimization , 1982 .

[12]  Frank E. Curtis,et al.  Flexible penalty functions for nonlinear constrained optimization , 2008 .

[13]  Daniel P. Robinson,et al.  A second derivative SQP method with imposed descent , 2008 .

[14]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[15]  Mikhail V. Solodov,et al.  Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems , 2010, Math. Program..

[16]  R. Fletcher Factorizing symmetric indefinite matrices , 1976 .

[17]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[18]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[19]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[20]  Jorge Nocedal,et al.  On the use of piecewise linear models in nonlinear programming , 2011, Mathematical Programming.

[21]  A. Forsgren Inertia-controlling factorizations for optimization algorithms , 2002 .

[22]  Javier M. Moguerza,et al.  Nonconvex optimization using negative curvature within a modified linesearch , 2008, Eur. J. Oper. Res..

[23]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[24]  Nicholas I. M. Gould,et al.  A Second Derivative SQP Method: Global Convergence , 2010, SIAM J. Optim..

[25]  Alexey F. Izmailov,et al.  On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers , 2011, Math. Program..

[26]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[27]  Roger Fletcher,et al.  On the global convergence of an SLP–filter algorithm that takes EQP steps , 2003, Math. Program..

[28]  José Mario Martínez,et al.  Second-order negative-curvature methods for box-constrained and general constrained optimization , 2010, Comput. Optim. Appl..

[29]  Abdeljelil Baccari,et al.  On the Classical Necessary Second-Order Optimality Conditions in the Presence of Equality and Inequality Constraints , 2005, SIAM J. Optim..

[30]  F. J. Gould,et al.  A NECESSARY AND SUFFICIENT QUALIFICATION FOR CONSTRAINED OPTIMIZATION , 1971 .

[31]  G. Debreu Definite and Semidefinite Quadratic Forms , 1952 .

[32]  Laura Palagi,et al.  Convergence to Second-Order Stationary Points of a Primal-Dual Algorithm Model for Nonlinear Programming , 2005, Math. Oper. Res..

[33]  Stephen J. Wright An Algorithm for Degenerate Nonlinear Programming with Rapid Local Convergence , 2005, SIAM J. Optim..

[34]  Ya-Xiang Yuan,et al.  A recursive quadratic programming algorithm that uses differentiable exact penalty functions , 1986, Math. Program..

[35]  Paulo J. S. Silva,et al.  Two New Weak Constraint Qualifications and Applications , 2012, SIAM J. Optim..

[36]  P. Gill,et al.  Some theoretical properties of an augmented lagrangian merit function , 1986 .

[37]  P. Toint,et al.  Testing a class of methods for solving minimization problems with simple bounds on the variables , 1988 .

[38]  P. Gill,et al.  Sequential Quadratic Programming Methods , 2012 .

[39]  Stephen J. Wright,et al.  Numerical Behavior of a Stabilized SQP Method for Degenerate NLP Problems , 2002, COCOS.

[40]  Daniel P. Robinson,et al.  A Globally Convergent Stabilized SQP Method , 2013, SIAM J. Optim..

[41]  Andreas Fischer,et al.  Local behavior of an iterative framework for generalized equations with nonisolated solutions , 2002, Math. Program..

[42]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[43]  Anders Forsgren,et al.  Computing Modified Newton Directions Using a Partial Cholesky Factorization , 1995, SIAM J. Sci. Comput..

[44]  N. Maratos,et al.  Exact penalty function algorithms for finite dimensional and control optimization problems , 1978 .

[45]  Stephen J. Wright Modifying SQP for Degenerate Problems , 2002, SIAM J. Optim..

[46]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[47]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[48]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[49]  J. Bunch,et al.  A computational method for the indefinite quadratic programming problem , 1980 .

[50]  Stephen J. Wright Constraint identification and algorithm stabilization for degenerate nonlinear programs , 2000, Math. Program..

[51]  Philip E. Gill,et al.  Methods for convex and general quadratic programming , 2014, Mathematical Programming Computation.

[52]  Michael A. Saunders,et al.  Inertia-Controlling Methods for General Quadratic Programming , 1991, SIAM Rev..

[53]  A. Baccari,et al.  On the Classical Necessary Second-Order Optimality Conditions , 2004 .

[54]  Nicholas I. M. Gould,et al.  On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem , 1985, Math. Program..

[55]  Alexey F. Izmailov,et al.  Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints , 2009, Comput. Optim. Appl..

[56]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[57]  William W. Hager,et al.  Stabilized Sequential Quadratic Programming , 1999, Comput. Optim. Appl..

[58]  W. Hager,et al.  Lipschitzian Stability for State Constrained Nonlinear Optimal Control , 1998 .

[59]  E. Panier,et al.  A superlinearly convergent feasible method for the solution of inequality constrained optimization problems , 1987 .

[60]  P. Gill,et al.  On the identification of local minimizers in inertia-controlling methods for quadratic programming , 1991 .

[61]  Stephen J. Wright Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution , 1998, Comput. Optim. Appl..

[62]  Alexey F. Izmailov,et al.  Stabilized SQP revisited , 2012, Math. Program..

[63]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .

[64]  Asuman E Ozdaglar,et al.  Pseudonormality and a Lagrange Multiplier Theory for Constrained Optimization , 2002 .

[65]  Alexey F. Izmailov,et al.  Newton-Type Methods for Optimization Problems without Constraint Qualifications , 2004, SIAM J. Optim..

[66]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[67]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[68]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[69]  M. Guignard Generalized Kuhn–Tucker Conditions for Mathematical Programming Problems in a Banach Space , 1969 .

[70]  Daniel P. Robinson,et al.  A primal-dual augmented Lagrangian , 2010, Computational Optimization and Applications.

[71]  R. Andreani,et al.  On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification , 2005 .

[72]  Francisco J. Prieto,et al.  A Sequential Quadratic Programming Algorithm Using an Incomplete Solution of the Subproblem , 1995, SIAM J. Optim..

[73]  Daniel P. Robinson,et al.  A second derivative SQP method: theoretical issues , 2008 .

[74]  Anders Forsgren,et al.  Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..

[75]  Andreas Fischer,et al.  Modified Wilson's Method for Nonlinear Programs with Nonunique Multipliers , 1999, Math. Oper. Res..

[76]  Zengxin Wei,et al.  On the Constant Positive Linear Dependence Condition and Its Application to SQP Methods , 1999, SIAM J. Optim..

[77]  Daniel P. Robinson Primal -dual methods for nonlinear optimization , 2007 .