A new fictitious domain method in shape optimization

Abstract The present paper is concerned with investigating the capability of the smoothness preserving fictitious domain method from Mommer (IMA J. Numer. Anal. 26:503–524, 2006) to shape optimization problems. We consider the problem of maximizing the Dirichlet energy functional in the class of all simply connected domains with fixed volume, where the state equation involves an elliptic second order differential operator with non-constant coefficients. Numerical experiments in two dimensions validate that we arrive at a fast and robust algorithm for the solution of the considered class of problems. The proposed method can be applied to three dimensional shape optimization problems.

[1]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[2]  Thomas Slawig,et al.  Domain Optimization for the Navier‐Stokes Equations by an Embedding Domain Technique , 2001 .

[3]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[4]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[5]  Helmut Harbrecht,et al.  Exterior electromagnetic shaping using wavelet BEM , 2005 .

[6]  J. Haslinger,et al.  2. A Mathematical Introduction to Sizing and Shape Optimization , 2003 .

[7]  Jean R. Roche,et al.  Numerical simulation of tridimensional electromagnetic shaping of liquid metals , 1993 .

[8]  D. Tiba,et al.  An Embedding of Domains Approach in Free Boundary Problems andOptimal Design , 1995 .

[9]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[10]  Helmut Harbrecht,et al.  Efficient treatment of stationary free boundary problems , 2006 .

[11]  Helmut Harbrecht,et al.  Coupling of FEM and BEM in Shape Optimization , 2006, Numerische Mathematik.

[12]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[13]  Helmut Harbrecht,et al.  Fast wavelet BEM for 3d electromagnetic shaping , 2005 .

[14]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[15]  Roland Glowinski,et al.  Wavelet and Finite Element Solutions for the Neumann Problem Using Fictitious Domains , 1996 .

[16]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[17]  Wolfgang Dahmen,et al.  Towards a fictitious domain method with optimally smooth solutions , 2005 .

[18]  R. Fletcher Practical Methods of Optimization , 1988 .

[19]  J. Simon Differentiation with Respect to the Domain in Boundary Value Problems , 1980 .

[20]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[21]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[22]  J. Haslinger,et al.  Finite Element Approximation for Optimal Shape, Material and Topology Design , 1996 .

[23]  Karsten Eppler,et al.  Optimal Shape Design for Elliptic Equations Via Bie-Methods , 2000 .

[24]  Johannes Terno,et al.  Numerik der Optimierung , 1993 .

[25]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[26]  S. Belov,et al.  Symmetry method and sufficient condition of optimality in a class of domain optimization problems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[27]  Helmut Harbrecht,et al.  Second-order shape optimization using wavelet BEM , 2006, Optim. Methods Softw..

[28]  K. Eppler Second derivatives and sufficient optimality conditions for shape funetionals , 2000 .

[29]  Jacques Simon,et al.  Etude de Problème d'Optimal Design , 1975, Optimization Techniques.

[30]  Thomas Slawig A Formula for the Derivative with Respect to Domain Variations in Navier--Stokes Flow Based on an Embedding Domain Method , 2003, SIAM J. Control. Optim..

[31]  Helmut Harbrecht,et al.  Fast Methods for Three-dimensional Inverse Obstacle Scattering Problems , 2007 .

[32]  J. Roche,et al.  Newton's Method in Shape Optimisation: A Three-Dimensional Case , 2000 .

[33]  Michel C. Delfour Shapes and Geometries , 1987 .

[34]  Mario S. Mommer,et al.  A smoothness preserving fictitious domain method for elliptic boundary-value problems , 2006 .