Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification

In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

[1]  J. P. M. Brenan,et al.  How to Identify Plants , 1957 .

[2]  S. Shearer,et al.  PLANT IDENTIFICATION USING COLOR CO-OCCURRENCE MATRICES , 1990 .

[3]  Josef Kittler,et al.  Reliable Classification of Chrysanthemum Leaves through Curvature Scale Space , 1997, Scale-Space.

[4]  Daphne Koller,et al.  Hierarchically Classifying Documents Using Very Few Words , 1997, ICML.

[5]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Tom M. Mitchell,et al.  Improving Text Classification by Shrinkage in a Hierarchy of Classes , 1998, ICML.

[7]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[8]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Susan T. Dumais,et al.  Hierarchical classification of Web content , 2000, SIGIR '00.

[10]  J. Hemming,et al.  PA—Precision Agriculture: Computer-Vision-based Weed Identification under Field Conditions using Controlled Lighting , 2001 .

[11]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Takeshi Saitoh,et al.  Automatic recognition of wild flowers , 2003, Systems and Computers in Japan.

[13]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[14]  Volker Roth,et al.  Feature Selection in Clustering Problems , 2003, NIPS.

[15]  Yoram Singer,et al.  Large margin hierarchical classification , 2004, ICML.

[16]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[17]  Carla E. Brodley,et al.  Feature Selection for Unsupervised Learning , 2004, J. Mach. Learn. Res..

[18]  Anil K. Jain,et al.  Simultaneous feature selection and clustering using mixture models , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  A. Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[20]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[21]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[22]  Thomas Hofmann,et al.  Hierarchical document categorization with support vector machines , 2004, CIKM '04.

[23]  Sadegh Abbasi,et al.  Matching shapes with self-intersections:application to leaf classification , 2004, IEEE Transactions on Image Processing.

[24]  Luc Van Gool,et al.  Moment invariants for recognition under changing viewpoint and illumination , 2004, Comput. Vis. Image Underst..

[25]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[26]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[27]  Charles A. Micchelli,et al.  Learning Multiple Tasks with Kernel Methods , 2005, J. Mach. Learn. Res..

[28]  Tong Zhang,et al.  A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data , 2005, J. Mach. Learn. Res..

[29]  Jiebo Luo,et al.  Beyond pixels: Exploiting camera metadata for photo classification , 2005, Pattern Recognit..

[30]  Radford M. Neal,et al.  Improving Classification When a Class Hierarchy is Available Using a Hierarchy-Based Prior , 2005, math/0510449.

[31]  Sean White,et al.  First steps toward an electronic field guide for plants , 2006 .

[32]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, CVPR Workshops.

[33]  A. Samal,et al.  Plant species identification using Elliptic Fourier leaf shape analysis , 2006 .

[34]  John R. Smith,et al.  Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.

[35]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[36]  Andrea Esuli,et al.  TreeBoost.MH: A Boosting Algorithm for Multi-label Hierarchical Text Categorization , 2006, SPIRE.

[37]  Andrew Zisserman,et al.  A Visual Vocabulary for Flower Classification , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[38]  Alexander J. Smola,et al.  Bundle Methods for Machine Learning , 2007, NIPS.

[39]  Laurent Itti,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Rapid Biologically-inspired Scene Classification Using Features Shared with Visual Attention , 2022 .

[40]  Jianping Fan,et al.  Hierarchical classification for automatic image annotation , 2007, SIGIR.

[41]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[42]  Pietro Perona,et al.  Unsupervised learning of visual taxonomies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Sean White,et al.  Searching the World's Herbaria: A System for Visual Identification of Plant Species , 2008, ECCV.

[44]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[45]  Jianping Fan,et al.  Integrating Concept Ontology and Multitask Learning to Achieve More Effective Classifier Training for Multilevel Image Annotation , 2008, IEEE Transactions on Image Processing.

[46]  Pietro Perona,et al.  Learning and using taxonomies for fast visual categorization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Alexei A. Efros,et al.  Unsupervised discovery of visual object class hierarchies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Qiang Yang,et al.  Deep classification in large-scale text hierarchies , 2008, SIGIR '08.

[49]  Cordelia Schmid,et al.  Constructing Category Hierarchies for Visual Recognition , 2008, ECCV.

[50]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[51]  Xiaotong Shen,et al.  On Large Margin Hierarchical Classification With Multiple Paths , 2009, Journal of the American Statistical Association.

[52]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Cordelia Schmid,et al.  Improving Bag-of-Features for Large Scale Image Search , 2010, International Journal of Computer Vision.

[54]  Manoranjan Dash,et al.  Feature Selection for Clustering , 2009, Encyclopedia of Database Systems.

[55]  Chi-Ren Shyu,et al.  Computable visually observed phenotype ontological framework for plants , 2011, BMC Bioinformatics.

[56]  Robert Tibshirani,et al.  A Framework for Feature Selection in Clustering , 2010, Journal of the American Statistical Association.

[57]  Alexander J. Smola,et al.  Bundle Methods for Regularized Risk Minimization , 2010, J. Mach. Learn. Res..

[58]  Jason Weston,et al.  Label Embedding Trees for Large Multi-Class Tasks , 2010, NIPS.

[59]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[60]  Alexander C. Berg,et al.  Fast and Balanced: Efficient Label Tree Learning for Large Scale Object Recognition , 2011, NIPS.

[61]  Daphne Koller,et al.  Discriminative learning of relaxed hierarchy for large-scale visual recognition , 2011, 2011 International Conference on Computer Vision.

[62]  Eric P. Xing,et al.  Large-Scale Category Structure Aware Image Categorization , 2011, NIPS.

[63]  Jianping Fan,et al.  Quantitative Characterization of Semantic Gaps for Learning Complexity Estimation and Inference Model Selection , 2012, IEEE Transactions on Multimedia.

[64]  Paolo Remagnino,et al.  Plant species identification using digital morphometrics: A review , 2012, Expert Syst. Appl..

[65]  W. John Kress,et al.  Leafsnap: A Computer Vision System for Automatic Plant Species Identification , 2012, ECCV.

[66]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  Yiming Yang,et al.  Bayesian models for Large-scale Hierarchical Classification , 2012, NIPS.

[68]  Jonathan Krause,et al.  Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[69]  Ohad Shamir,et al.  Probabilistic Label Trees for Efficient Large Scale Image Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[70]  Nozha Boujemaa,et al.  The ImageCLEF 2012 Plant Identification Task , 2012, CLEF.

[71]  Bin Zhao,et al.  Sparse Output Coding for Large-Scale Visual Recognition , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[72]  David A. Forsyth,et al.  Large multi-class image categorization with ensembles of label trees , 2013, 2013 IEEE International Conference on Multimedia and Expo (ICME).

[73]  Jonathon Shlens,et al.  Fast, Accurate Detection of 100,000 Object Classes on a Single Machine , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[74]  Vibhav Vineet,et al.  Efficient Salient Region Detection with Soft Image Abstraction , 2013, 2013 IEEE International Conference on Computer Vision.

[75]  Jingdong Wang,et al.  Salient Object Detection: A Discriminative Regional Feature Integration Approach , 2013, International Journal of Computer Vision.

[76]  Ali Borji,et al.  Salient Object Detection: A Benchmark , 2015, IEEE Transactions on Image Processing.

[77]  C A Nelson,et al.  Learning to Learn , 2017, Encyclopedia of Machine Learning and Data Mining.