Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives.

Evidence that nanoscale surface properties stimulate and guide various molecular and biological processes at the implant/tissue interface is fostering a new trend in designing implantable metals. Cutting-edge expertise and techniques drawn from widely separated fields, such as nanotechnology, materials engineering and biology, have been advantageously exploited to nanoengineer surfaces in ways that control and direct these processes in predictable manners. In this review, we present and discuss the state-of-the-art of nanotechnology-based approaches currently adopted to modify the surface of metals used for orthopedic and dental applications, and also briefly consider their use in the cardiovascular field. The effects of nanoengineered surfaces on various in vitro molecular and cellular events are firstly discussed. This review also provides an overview of in vivo and clinical studies with nanostructured metallic implants, and addresses the potential influence of nanotopography on biomechanical events at interfaces. Ultimately, the objective of this work is to give the readership a comprehensive picture of the current advances, future developments and challenges in the application of the infinitesimally small to biomedical surface science. We believe that an integrated understanding of the in vitro and particularly of the in vivo behavior is mandatory for the proper exploitation of nanostructured implantable metals and, indeed, of all biomaterials.

[1]  M. Yoshinari,et al.  Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[2]  C. Susin,et al.  Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-7 (rhBMP-7/rhOP-1): histological observations. , 2010, Journal of clinical periodontology.

[3]  D. Scharnweber,et al.  Biological nano-functionalization of titanium-based biomaterial surfaces: a flexible toolbox , 2010, Journal of The Royal Society Interface.

[4]  Junichi Takagi,et al.  Global Conformational Rearrangements in Integrin Extracellular Domains in Outside-In and Inside-Out Signaling , 2002, Cell.

[5]  N. Haas,et al.  Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. , 2003, Bone.

[6]  R Thull,et al.  Nanostructured niobium oxide coatings influence osteoblast adhesion. , 2006, Journal of biomedical materials research. Part A.

[7]  P Augat,et al.  Effect of dynamization on gap healing of diaphyseal fractures under external fixation. , 1995, Clinical biomechanics.

[8]  J. Jansen,et al.  Effects of implant surface coatings and composition on bone integration: a systematic review. , 2009, Clinical oral implants research.

[9]  D. Kereiakes,et al.  Thrombosis and drug-eluting stents: a critical appraisal. , 2004, Reviews in cardiovascular medicine.

[10]  J. Macák,et al.  Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. , 2005, Journal of biomedical materials research. Part A.

[11]  K. Kim,et al.  Nanocrystalline hydroxyapatite coatings from ultrasonated electrolyte: preparation, characterization, and osteoblast responses. , 2008, Journal of biomedical materials research. Part A.

[12]  M. Sanz,et al.  Early healing of implants placed into fresh extraction sockets: an experimental study in the beagle dog. II: ridge alterations. , 2009, Journal of clinical periodontology.

[13]  S. Bauer,et al.  Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. , 2009, Nano letters.

[14]  David L. Cochran,et al.  Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. , 2003, European cells & materials.

[15]  I. Nishimura,et al.  Genes Differentially Expressed in Titanium Implant Healing , 2006, Journal of dental research.

[16]  Diego Mantovani,et al.  Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. , 2010, Acta biomaterialia.

[17]  Jin-Woo Park,et al.  Effects of calcium ion incorporation on osteoblast gene expression in MC3T3-E1 cells cultured on microstructured titanium surfaces. , 2008, Journal of biomedical materials research. Part A.

[18]  T. Hanawa Materials for metallic stents , 2009, Journal of Artificial Organs.

[19]  R. Moseley,et al.  Optimisation of the hydrogen peroxide pre-treatment of titanium: surface characterisation and protein adsorption. , 2008, Clinical oral implants research.

[20]  N. Selvamurugan,et al.  The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response , 2009, Nanotechnology.

[21]  F. Rosei,et al.  Self-assembled monolayer of alkanephosphoric acid on nanotextured Ti. , 2008, The Journal of chemical physics.

[22]  Hyeran Noh,et al.  Volumetric interpretation of protein adsorption: competition from mixtures and the Vroman effect. , 2007, Biomaterials.

[23]  S. Szmukler‐Moncler,et al.  Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. , 1998, Journal of biomedical materials research.

[24]  T. Webster,et al.  Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. , 2004, Journal of biomedical materials research. Part A.

[25]  myung-un choi,et al.  Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell. , 2006, Biomaterials.

[26]  D. Cochran,et al.  A comparison of endosseous dental implant surfaces. , 1999, Journal of periodontology.

[27]  Jack E. Lemons,et al.  Medical Applications of Titanium and Its Alloys: The Material and Biological Issues , 1996 .

[28]  J. Sepulveda,et al.  Assembly and signaling of adhesion complexes. , 2005, Current topics in developmental biology.

[29]  T. Albrektsson,et al.  Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. , 2006, The International journal of prosthodontics.

[30]  R. Jaffin,et al.  The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. , 1991, Journal of periodontology.

[31]  R. G. Richards,et al.  Nanotopographical modification: a regulator of cellular function through focal adhesions. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[32]  I. Jang,et al.  Bone response to endosseous titanium implants surface-modified by blasting and chemical treatment: a histomorphometric study in the rabbit femur. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[33]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanograined Ti modified with KRSR. , 2007, Journal of biomedical materials research. Part A.

[34]  X. Bustelo,et al.  GTP‐binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[35]  Lester J. Smith,et al.  Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium for orthopedic applications , 2007, International journal of nanomedicine.

[36]  Ignace Naert,et al.  Quality of dental implants. , 2003, International dental journal.

[37]  A. Piattelli,et al.  Bone contact around osseointegrated implants: a histologic study of acid-etched and machined surfaces. , 2006, Journal of long-term effects of medical implants.

[38]  Patrik Schmuki,et al.  Nanosize and vitality: TiO2 nanotube diameter directs cell fate. , 2007, Nano letters.

[39]  S. vandeVondele,et al.  RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces. , 2004, Journal of biomedical materials research. Part A.

[40]  G. Whitesides,et al.  Cell shape provides global control of focal adhesion assembly. , 2003, Biochemical and biophysical research communications.

[41]  J. Bumgardner,et al.  XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[42]  I. Zhitomirsky,et al.  Surface modification with an antithrombin-heparin complex for anticoagulation: studies on a model surface with gold as substrate. , 2010, Acta biomaterialia.

[43]  James M. Anderson,et al.  Foreign body reaction to biomaterials. , 2008, Seminars in immunology.

[44]  I. Saguy,et al.  Contact angle measurement on rough surfaces. , 2004, Journal of colloid and interface science.

[45]  I. Abrahamsson,et al.  Healing at fluoride-modified implants placed in wide marginal defects: an experimental study in dogs. , 2008, Clinical oral implants research.

[46]  J. A. Currey,et al.  FAK-Mediated Mechanotransduction in Skeletal Regeneration , 2007, PloS one.

[47]  Matthew J Dalby,et al.  Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. , 2009, Acta biomaterialia.

[48]  C. Pradier,et al.  Grafting of lysozyme and/or poly(ethylene glycol) to prevent biofilm growth on stainless steel surfaces. , 2009, The journal of physical chemistry. B.

[49]  P. Fitzgerald,et al.  Drug delivery via nano-, micro and macroporous coronary stent surfaces , 2007, Expert opinion on drug delivery.

[50]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[51]  C. Tetta,et al.  Micro and nano-structured surfaces , 2003, Journal of materials science. Materials in medicine.

[52]  Maxence Bigerelle,et al.  Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. , 2002, Biomaterials.

[53]  G. Stone,et al.  Drug‐eluting stent task force: Final report and recommendations of the working committees on cost‐effectiveness/economics, access to care, and medicolegal issues , 2004, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[54]  Thomas J Webster,et al.  The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. , 2008, Biomaterials.

[55]  Andrés J. García,et al.  Biomolecular surface coating to enhance orthopaedic tissue healing and integration. , 2007, Biomaterials.

[56]  Abraham Marmur,et al.  Soft contact: measurement and interpretation of contact angles. , 2006, Soft matter.

[57]  J. Lindhe,et al.  Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. , 2007, Clinical oral implants research.

[58]  B D Boyan,et al.  Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. , 1996, Journal of biomedical materials research.

[59]  J. Ong,et al.  The Integration of Chitosan-Coated Titanium in Bone: An In Vivo Study in Rabbits , 2007, Implant dentistry.

[60]  Flemming Besenbacher,et al.  Fibronectin adsorption on tantalum: the influence of nanoroughness. , 2008, The journal of physical chemistry. B.

[61]  L. Claes,et al.  Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[62]  C T Rubin,et al.  Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. , 1994, Clinical orthopaedics and related research.

[63]  Marc D Feldman,et al.  Coronary stents: a materials perspective. , 2007, Biomaterials.

[64]  J. Wozney,et al.  Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior maxilla (Type IV bone) in non-human primates. , 2008, Journal of clinical periodontology.

[65]  A. Nanci,et al.  Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. , 2007, Journal of biomedical materials research. Part A.

[66]  J. Jansen,et al.  Effects of implant geometry, surface properties, and TGF-beta1 on peri-implant bone response: an experimental study in goats. , 2009, Clinical oral implants research.

[67]  M. Foss,et al.  Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique. , 2005, Colloids and surfaces. B, Biointerfaces.

[68]  Y. L. Jeyachandran,et al.  Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces. , 2010, Journal of colloid and interface science.

[69]  L. Cooper,et al.  The combination of micron and nanotopography by H(2)SO(4)/H(2)O(2) treatment and its effects on osteoblast-specific gene expression of hMSCs. , 2010, Journal of biomedical materials research. Part A.

[70]  C. Rey,et al.  Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: relationship to surface energies. , 1999, Journal of biomedical materials research.

[71]  J. Jansen,et al.  Implant Surface Roughness and Bone Healing: a Systematic Review , 2006, Journal of dental research.

[72]  Joshua C. Hansen,et al.  Effect of surface nanoscale topography on elastic modulus of individual osteoblastic cells as determined by atomic force microscopy. , 2007, Journal of biomechanics.

[73]  G. Whitesides The 'right' size in nanobiotechnology , 2003, Nature Biotechnology.

[74]  Thomas Hanke,et al.  Modification of Ti6Al4V surfaces using collagen I, III, and fibronectin. I. Biochemical and morphological characteristics of the adsorbed matrix. , 2003, Journal of biomedical materials research. Part A.

[75]  Cameron J Wilson,et al.  Mediation of biomaterial-cell interactions by adsorbed proteins: a review. , 2005, Tissue engineering.

[76]  W. Att,et al.  Age-dependent Degradation of the Protein Adsorption Capacity of Titanium , 2009, Journal of dental research.

[77]  Lingzhou Zhao,et al.  Antibacterial coatings on titanium implants. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[78]  D. van Steenberghe Oral implants. , 1991, Current opinion in dentistry.

[79]  T. Webster,et al.  Enhanced functions of vascular cells on nanostructured Ti for improved stent applications. , 2007, Tissue engineering.

[80]  Sungho Jin,et al.  Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. , 2005, Biomaterials.

[81]  F. Rosei,et al.  Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges. , 2009, Small.

[82]  J. Davies,et al.  Red blood cell and platelet interactions with titanium implant surfaces. , 2000, Clinical oral implants research.

[83]  T. Dodson,et al.  Thin bioactive ceramic-coated alumina-blasted/acid-etched implant surface enhances biomechanical fixation of implants: an experimental study in dogs. , 2011, Clinical implant dentistry and related research.

[84]  T. Albrektsson,et al.  Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. , 2005, The International journal of oral & maxillofacial implants.

[85]  P. Layrolle,et al.  Surface treatments of titanium dental implants for rapid osseointegration. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[86]  C. Chung,et al.  The effect of the surface modification of titanium using a recombinant fragment of fibronectin and vitronectin on cell behavior. , 2005, Biomaterials.

[87]  A. Piattelli,et al.  Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. , 2002, The Journal of oral implantology.

[88]  Tomas Albrektsson,et al.  The bone response of oxidized bioactive and non-bioactive titanium implants. , 2005, Biomaterials.

[89]  G. A. Horley Editorial: The Importance of Being Nano , 2006 .

[90]  P. Galindo-Moreno,et al.  Implant Surface Treatment Using Biomimetic Agents , 2009, Implant dentistry.

[91]  S A Meguid,et al.  Differences in osseointegration rate due to implant surface geometry can be explained by local tissue strains , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[92]  K. Anselme,et al.  Osteoblast adhesion on biomaterials. , 2000, Biomaterials.

[93]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[94]  Patrik Schmuki,et al.  TiO2 nanotube surfaces: 15 nm--an optimal length scale of surface topography for cell adhesion and differentiation. , 2009, Small.

[95]  C. Johansson,et al.  Resonance frequency measurements in vivo and related surface properties of magnesium-incorporated, micropatterned and magnesium-incorporated TiUnite, Osseotite, SLA and TiOblast implants. , 2009, Clinical oral implants research.

[96]  F. Rosei,et al.  Influence of Treatment Conditions on the Chemical Oxidative Activity of H2SO4/H2O2 Mixtures for Modulating the Topography of Titanium , 2009 .

[97]  Antonio Nanci,et al.  Surface Nanopatterning to Control Cell Growth , 2008 .

[98]  D. R. Sumner,et al.  Patterns of gene expression in rat bone marrow stromal cells cultured on titanium alloy discs of different roughness. , 2004, Journal of biomedical materials research. Part A.

[99]  G. Cardenas,et al.  Chitosan composite films. Biomedical applications , 2008, Journal of materials science. Materials in medicine.

[100]  A. Nanci,et al.  Treatment of a commercial, machined surface titanium implant with H2SO4/H2O2 enhances contact osteogenesis. , 2007, Clinical oral implants research.

[101]  T. Albrektsson,et al.  The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone. , 2009, Journal of biomedical materials research. Part A.

[102]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[103]  Sami Alom Ruiz,et al.  Nanotechnology for Cell–Substrate Interactions , 2006, Annals of Biomedical Engineering.

[104]  Thomas J Webster,et al.  Enhanced osteoblast functions on anodized titanium with nanotube-like structures. , 2008, Journal of biomedical materials research. Part A.

[105]  F. Rosei,et al.  Nanoscale oxidative patterning of metallic surfaces to modulate cell activity and fate. , 2009, Nano letters.

[106]  C. M. Alves,et al.  The competitive adsorption of human proteins onto natural-based biomaterials , 2010, Journal of The Royal Society Interface.

[107]  T. Webster,et al.  Nanotechnology controlled drug delivery for treating bone diseases , 2009, Expert opinion on drug delivery.

[108]  Ignace Naert,et al.  Positive effect of early loading on implant stability in the bi-cortical guinea-pig model. , 2005, Clinical oral implants research.

[109]  张海霞,et al.  牙根管含氯消毒剂的功效[英]/Zamany A,Safavi K, Spangberg LSW // Oral Surg Oral Med Oral Pathol. , 2005 .

[110]  Thomas J Webster,et al.  TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. , 2008, Journal of biomedical materials research. Part A.

[111]  T. Albrektsson,et al.  Oral implant surfaces: Part 2--review focusing on clinical knowledge of different surfaces. , 2004, The International journal of prosthodontics.

[112]  A. Holmen,et al.  Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. , 2006, Biomaterials.

[113]  Lyndon F Cooper,et al.  Advancing dental implant surface technology--from micron- to nanotopography. , 2008, Biomaterials.

[114]  L. Claes,et al.  Temporary distraction and compression of a diaphyseal osteotomy accelerates bone healing , 2008, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[115]  F. Rosei,et al.  Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. , 2008, Biomaterials.

[116]  Patrik Schmuki,et al.  TiO2 nanotubes : Tailoring the geometry in H3PO4/HF electrolytes , 2006 .

[117]  L. Tolstunov Dental Implant Success-Failure Analysis: A Concept of Implant Vulnerability , 2006, Implant dentistry.

[118]  J. Planell,et al.  Human-osteoblast proliferation and differentiation on grit-blasted and bioactive titanium for dental applications , 2002, Journal of materials science. Materials in medicine.

[119]  A. Nanci,et al.  In Vivo Functional Analysis of Polyglutamic Acid Domains in Recombinant Bone Sialoprotein , 2007, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[120]  Formulation of nanoparticle-eluting stents by a cationic electrodeposition coating technology: efficient nano-drug delivery via bioabsorbable polymeric nanoparticle-eluting stents in porcine coronary arteries. , 2009, JACC. Cardiovascular interventions.

[121]  M. Textor,et al.  Surface engineering approaches to micropattern surfaces for cell-based assays. , 2006, Biomaterials.

[122]  N. Vilaboa,et al.  Osteoblast response to thermally oxidized Ti6Al4V alloy. , 2005, Journal of biomedical materials research. Part A.

[123]  K Asaoka,et al.  Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. , 1997, Journal of biomedical materials research.

[124]  Michael Tanzer,et al.  A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography. , 2007, Journal of biomedical materials research. Part A.

[125]  T. Albrektsson,et al.  Nano hydroxyapatite structures influence early bone formation. , 2008, Journal of biomedical materials research. Part A.

[126]  Yoshinori Kuboki,et al.  Type I collagen‐induced osteoblastic differentiation of bone‐marrow cells mediated by collagen‐α2β1 integrin interaction , 2000 .

[127]  F. Watt,et al.  Cell shape controls terminal differentiation of human epidermal keratinocytes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[128]  T. Webster,et al.  Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents , 2009, International journal of nanomedicine.

[129]  T. Albrektsson,et al.  Direct loading of Nobel Direct and Nobel Perfect one-piece implants: a 1-year prospective clinical and radiographic study. , 2007, Clinical oral implants research.

[130]  D. Moratal,et al.  Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. , 2010, Colloids and surfaces. B, Biointerfaces.

[131]  I. Naert,et al.  Effect of intermittent loading and surface roughness on peri-implant bone formation in a bone chamber model. , 2007, Journal of clinical periodontology.

[132]  J. Schwarzbauer,et al.  Modulation of Cell‐Extracellular Matrix Interactions a , 1998, Annals of the New York Academy of Sciences.

[133]  T. Testori,et al.  Influence of a nanometer-scale surface enhancement on de novo bone formation on titanium implants: a histomorphometric study in human maxillae. , 2007, The International journal of periodontics & restorative dentistry.

[134]  T. Webster,et al.  Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. , 2000, Journal of biomedical materials research.

[135]  A. Gleizes,et al.  The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel , 2007, Journal of materials science. Materials in medicine.

[136]  Patrik Schmuki,et al.  Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix , 2009, Cell and Tissue Research.

[137]  P. Serruys,et al.  The future of drug-eluting stents. , 2008, Pharmacological research.

[138]  T. Albrektsson,et al.  Effects of titanium surface topography on bone integration: a systematic review. , 2009, Clinical oral implants research.

[139]  K. Kim,et al.  Surface modification of titanium and titanium alloys by ion implantation. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[140]  Joshua C. Hansen,et al.  The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. , 2007, Biomaterials.

[141]  P. Ducheyne,et al.  Covalently Attached Vancomycin Provides a Nanoscale Antibacterial Surface , 2007, Clinical orthopaedics and related research.

[142]  T. Webster,et al.  The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. , 2010, Biomaterials.

[143]  L. Cooper,et al.  The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. , 2007, Biomaterials.

[144]  J D Humphrey,et al.  Stress, strain, and mechanotransduction in cells. , 2001, Journal of biomechanical engineering.

[145]  Tarun Goswami,et al.  Hip implants – Paper VI – Ion concentrations , 2007 .

[146]  A. Bandyopadhyay,et al.  TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. , 2009, Journal of biomedical materials research. Part A.

[147]  David J. Mooney,et al.  Growth Factors, Matrices, and Forces Combine and Control Stem Cells , 2009, Science.

[148]  E. Wickstrom,et al.  Vancomycin covalently bonded to titanium alloy prevents bacterial colonization , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[149]  A. Ayón,et al.  Drug delivery from therapeutic self-assembled monolayers (T-SAMs) on 316L stainless steel. , 2008, Current topics in medicinal chemistry.

[150]  Wei Zhou,et al.  The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation , 2008, Journal of materials science. Materials in medicine.

[151]  Bengt Herbert Kasemo,et al.  Biological surface science , 1998 .

[152]  S. Nathan,et al.  Intracoronary beta brachytherapy as a treatment option for high-risk refractory in-stent restenosis; Compassionate use. , 2004, Cardiovascular radiation medicine.

[153]  Maxence Bigerelle,et al.  Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion , 2006, Journal of materials science. Materials in medicine.

[154]  J. Bechtold,et al.  Bone growth enhancement in vivo on press-fit titanium alloy implants with acid etched microtexture. , 2008, Journal of biomedical materials research. Part A.

[155]  Electrochemical surface modification of titanium in dentistry. , 2009 .

[156]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[157]  M. Raspanti,et al.  Different titanium surface treatment influences human mandibular osteoblast response. , 2004, Journal of periodontology.

[158]  J. Bechtold,et al.  Loading improves anchorage of hydroxyapatite implants more than titanium implants. , 2001, Journal of biomedical materials research.

[159]  M. Foss,et al.  Tantalum films with well-controlled roughness grown by oblique incidence deposition , 2005 .

[160]  J. A. Currey,et al.  Effect of mechanical stimuli on skeletal regeneration around implants. , 2007, Bone.

[161]  M. Morra,et al.  Modulating in vitro bone cell and macrophage behavior by immobilized enzymatically tailored pectins. , 2008, Journal of Biomedical Materials Research. Part A.

[162]  Ann Wennerberg,et al.  Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. , 2004, The International journal of prosthodontics.

[163]  Thomas J Webster,et al.  Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion , 2008, Nanotechnology.

[164]  C. Wilkinson,et al.  The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. , 2007, Nature materials.

[165]  D. Velten,et al.  Biomimetic implant coatings. , 2007, Biomolecular engineering.

[166]  Paulo G. Coelho,et al.  Removal Torque and Histomorphometric Evaluation of Bioceramic Grit-Blasted/Acid-Etched and Dual Acid-Etched Implant Surfaces: An Experimental Study in Dogs , 2008 .

[167]  Antonio Nanci,et al.  Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. , 2004, Biomaterials.

[168]  P. Coelho,et al.  Early healing of nanothickness bioceramic coatings on dental implants. An experimental study in dogs. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[169]  P. Tengvall,et al.  Adsorption of albumin and IgG to porous and smooth titanium. , 2004, Colloids and surfaces. B, Biointerfaces.

[170]  S. Heo,et al.  Osseointegration of anodized titanium implants under different current voltages: a rabbit study. , 2007, Journal of oral rehabilitation.

[171]  D. Puleo,et al.  Understanding and controlling the bone-implant interface. , 1999, Biomaterials.

[172]  R. Darouiche,et al.  In vivo efficacy of antimicrobial-coated devices. , 2007, The Journal of bone and joint surgery. American volume.

[173]  Michael Tanzer,et al.  Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. , 1999, The Journal of bone and joint surgery. British volume.

[174]  Jin-Woo Park,et al.  Effects of a novel calcium titanate coating on the osseointegration of blasted endosseous implants in rabbit tibiae. , 2007, Clinical oral implants research.

[175]  J. Davies,et al.  The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces. , 2007, Biomaterials.

[176]  G. Altankov,et al.  Fibronectin activity on substrates with controlled --OH density. , 2010, Journal of biomedical materials research. Part A.

[177]  A. Palmieri,et al.  Peptide-15 Changes miRNA Expression in Osteoblast-Like Cells , 2008, Implant dentistry.

[178]  Stephen C Bayne,et al.  A review of adhesion science. , 2010, Dental materials : official publication of the Academy of Dental Materials.

[179]  E. A. Cavalcanti-Adam,et al.  Cellular Chemomechanics at Interfaces: Sensing, Integration and Response{ , 2006 .

[180]  Maxence Bigerelle,et al.  Topography effects of pure titanium substrates on human osteoblast long-term adhesion. , 2005, Acta biomaterialia.

[181]  T. Webster,et al.  Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation , 2008, International journal of nanomedicine.

[182]  L. Geris,et al.  Influence of controlled immediate loading and implant design on peri-implant bone formation. , 2007, Journal of clinical periodontology.

[183]  P. Descouts,et al.  Osteoblast culture on polished titanium disks modified with phosphonic acids. , 2002, Journal of biomedical materials research.

[184]  Emeka Nkenke,et al.  In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[185]  G Van der Perre,et al.  The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. , 1998, Clinical oral implants research.

[186]  M. Yoshinari,et al.  Influence of surface modifications to titanium on antibacterial activity in vitro. , 2001, Biomaterials.

[187]  Tejal A Desai,et al.  Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? , 2007, Small.

[188]  P. Vermette,et al.  Cell adhesion resistance mechanisms using arrays of dextran-derivative layers. , 2008, Journal of biomedical materials research. Part A.

[189]  V. Zhdanov,et al.  Enhancement of protein adsorption induced by surface roughness. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[190]  L. Geris,et al.  The influence of micro-motion on the tissue differentiation around immediately loaded cylindrical turned titanium implants. , 2006, Archives of oral biology.

[191]  M. Morra Biochemical modification of titanium surfaces: peptides and ECM proteins. , 2006, European cells & materials.

[192]  P. Hodgson,et al.  Cytotoxicity of Titanium and Titanium Alloying Elements , 2010, Journal of dental research.

[193]  Aimin Li,et al.  Electrophoretic deposition of HA/MWNTs composite coating for biomaterial applications , 2008, Journal of materials science. Materials in medicine.

[194]  Somnath C. Roy,et al.  The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. , 2007, Biomaterials.

[195]  M. Foss,et al.  Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D. , 2008, Colloids and surfaces. B, Biointerfaces.

[196]  Elizabeth G Loboa,et al.  Mechanobiology of mandibular distraction osteogenesis: experimental analyses with a rat model. , 2004, Bone.

[197]  R. K. Roy,et al.  Biomedical applications of diamond-like carbon coatings: a review. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[198]  S A Meguid,et al.  Mechanical regulation of localized and appositional bone formation around bone-interfacing implants. , 2001, Journal of biomedical materials research.

[199]  John B. Brunski,et al.  In Vivo Bone Response to Biomechanical Loading at the Bone/Dental-Implant Interface , 1999, Advances in dental research.

[200]  S. Bauer,et al.  Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[201]  R. Erbel,et al.  Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits , 2003, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[202]  J. Schwarzbauer,et al.  Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. , 2005, Matrix biology : journal of the International Society for Matrix Biology.

[203]  Haihui Ye,et al.  Observation of Water Confined in Nanometer Channels of Closed Carbon Nanotubes , 2004 .

[204]  B. Größner-Schreiber,et al.  Focal adhesion contact formation by fibroblasts cultured on surface-modified dental implants: an in vitro study. , 2006, Clinical oral implants research.

[205]  T. K. Bhattacharyya,et al.  Biocompatibility of diamond-like nanocomposite thin films , 2007, Journal of materials science. Materials in medicine.

[206]  P. Ducheyne,et al.  RGDS peptides immobilized on titanium alloy stimulate bone cell attachment, differentiation and confer resistance to apoptosis. , 2007, Journal of biomedical materials research. Part A.

[207]  K. Jandt,et al.  Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? , 2006, Colloids and surfaces. B, Biointerfaces.

[208]  M. H. Fernandes,et al.  Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures. , 2008, Journal of biomedical materials research. Part A.

[209]  P. Ducheyne,et al.  Effect of functional end groups of silane self‐assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function , 2009, Journal of tissue engineering and regenerative medicine.

[210]  J. Davies,et al.  Understanding peri-implant endosseous healing. , 2003, Journal of dental education.

[211]  M. McKee,et al.  Chemical modification of titanium surfaces for covalent attachment of biological molecules. , 1998, Journal of biomedical materials research.

[212]  T. Webster,et al.  Greater osteoblast long-term functions on ionic plasma deposited nanostructured orthopedic implant coatings. , 2008, Journal of biomedical materials research. Part A.

[213]  B. Kasemo,et al.  Implant Surfaces and Interface Processes , 1999, Advances in dental research.

[214]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[215]  Adam J Engler,et al.  Multiscale Modeling of Form and Function , 2009, Science.

[216]  J. Hu,et al.  Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants. , 2009, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[217]  D. Seabold,et al.  Effects of implant surface microtopography on osteoblast gene expression. , 2005, Clinical oral implants research.

[218]  T. Ogawa,et al.  Ti Nano-nodular Structuring for Bone Integration and Regeneration , 2008, Journal of dental research.

[219]  Doron Steinberg,et al.  Adsorption of human plasma proteins to modified titanium surfaces. , 2007, Clinical oral implants research.

[220]  T. Park,et al.  Controlled gene-eluting metal stent fabricated by bio-inspired surface modification with hyaluronic acid and deposition of DNA/PEI polyplexes. , 2010, International journal of pharmaceutics.

[221]  T. Webster,et al.  Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices. , 2010, Acta biomaterialia.

[222]  Julie Gold,et al.  Protein Adsorption on Model Surfaces with Controlled Nanotopography and Chemistry , 2002 .

[223]  S. Kurtz,et al.  Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. , 2007, The Journal of bone and joint surgery. American volume.

[224]  T. Hanawa,et al.  Enhanced osteoconductivity of micro-structured titanium implants (XiVE S CELLplus) by addition of surface calcium chemistry: a histomorphometric study in the rabbit femur. , 2009, Clinical oral implants research.

[225]  K. Leong,et al.  Significance of synthetic nanostructures in dictating cellular response. , 2005, Nanomedicine : nanotechnology, biology, and medicine.

[226]  Abraham Marmur,et al.  Partial wetting of chemically patterned surfaces: the effect of drop size. , 2003, Journal of colloid and interface science.

[227]  D. Scharnweber,et al.  Characterization of collagen II fibrils containing biglycan and their effect as a coating on osteoblast adhesion and proliferation , 2008, Journal of materials science. Materials in medicine.

[228]  J. Bumgardner,et al.  Chitosan-coated Stainless Steel Screws for Fixation in Contaminated Fractures , 2008, Clinical orthopaedics and related research.

[229]  S. Chiou,et al.  Formation of TiO(2) nano-network on titanium surface increases the human cell growth. , 2009, Dental materials : official publication of the Academy of Dental Materials.

[230]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[231]  M. Jäger,et al.  Significance of Nano- and Microtopography for Cell-Surface Interactions in Orthopaedic Implants , 2007, Journal of biomedicine & biotechnology.

[232]  Mark H Schoenfisch,et al.  Reducing implant-related infections: active release strategies. , 2006, Chemical Society reviews.

[233]  D. Mantovani,et al.  Developments in metallic biodegradable stents. , 2010, Acta biomaterialia.

[234]  D. Scharnweber,et al.  Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. , 2006, Biomaterials.

[235]  Gladius Lewis,et al.  Materials, fluid dynamics, and solid mechanics aspects of coronary artery stents: a state-of-the-art review. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[236]  Christopher S. Chen,et al.  Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. , 2004, Developmental cell.

[237]  M J Bissell,et al.  Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[238]  H. Schliephake,et al.  Chemical and biological functionalization of titanium for dental implants , 2008 .

[239]  R. Hoerr,et al.  Drug-eluting stent coatings. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[240]  Ardeshir Bayat,et al.  Adult stem cells in tissue engineering , 2009, Expert review of medical devices.

[241]  Julian H. George,et al.  Exploring and Engineering the Cell Surface Interface , 2005, Science.

[242]  T. Hanawa In vivo metallic biomaterials and surface modification , 1999 .

[243]  Thomas J. Webster,et al.  Helical rosette nanotubes: a more effective orthopaedic implant material , 2004 .

[244]  Thomas Jay Webster,et al.  Nanomedicine for implants: a review of studies and necessary experimental tools. , 2007, Biomaterials.

[245]  V. Barranco,et al.  Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. , 2007, Journal of biomedical materials research. Part A.

[246]  J. Fiorellini,et al.  A retrospective study of dental implants in diabetic patients. , 2000, The International journal of periodontics & restorative dentistry.

[247]  S. Caputi,et al.  Randomized, controlled histologic and histomorphometric evaluation of implants with nanometer-scale calcium phosphate added to the dual acid-etched surface in the human posterior maxilla. , 2007, Journal of periodontology.

[248]  R. Oreffo,et al.  Osteoprogenitor response to semi-ordered and random nanotopographies. , 2006, Biomaterials.

[249]  F M Watt,et al.  Regulation of development and differentiation by the extracellular matrix. , 1993, Development.

[250]  C. Bain,et al.  Smoking and implant failure--benefits of a smoking cessation protocol. , 1996, The International journal of oral & maxillofacial implants.

[251]  T. Webster,et al.  Increased chondrocyte adhesion on nanotubular anodized titanium. , 2009, Journal of biomedical materials research. Part A.

[252]  Soojin Park,et al.  In vitro bioactivity of sol–gel-derived hydroxyapatite particulate nanofiber modified titanium , 2010, Journal of materials science. Materials in medicine.

[253]  A. R. Santos,et al.  Cytotoxicity study of some Ti alloys used as biomaterial , 2009 .

[254]  T. Webster,et al.  Helical rosette nanotubes: a biomimetic coating for orthopedics? , 2005, Biomaterials.

[255]  F. Rosei,et al.  Adsorption of proteins on nanoporous Ti surfaces , 2010 .

[256]  David Farrar,et al.  Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. , 2006, Journal of the American Chemical Society.

[257]  Thomas J Webster,et al.  The relationship between the nanostructure of titanium surfaces and bacterial attachment. , 2010, Biomaterials.