Retroposition as a source of antisense long non-coding RNAs with possible regulatory functions.

Long non-coding RNAs (lncRNAs) are a class of intensely studied, yet enigmatic molecules that make up a substantial portion of the human transcriptome. In this work, we link the origins and functions of some lncRNAs to retroposition, a process resulting in the creation of intronless copies (retrocopies) of the so-called parental genes. We found 35 human retrocopies transcribed in antisense and giving rise to 58 lncRNA transcripts. These lncRNAs share sequence similarity with the corresponding parental genes but in the sense/antisense orientation, meaning they have the potential to interact with each other and to form RNA:RNA duplexes. We took a closer look at these duplexes and found that 10 of the lncRNAs might regulate parental gene expression and processing at the pre-mRNA and mRNA levels. Further analysis of the co-expression and expression correlation provided support for the existence of functional coupling between lncRNAs and their mate parental gene transcripts.

[1]  Leonard Lipovich,et al.  Global Intersection of Long Non-Coding RNAs with Processed and Unprocessed Pseudogenes in the Human Genome , 2016, Front. Genet..

[2]  M. Szcześniak,et al.  lncRNA-RNA Interactions across the Human Transcriptome , 2016, PloS one.

[3]  Albert J. Vilella,et al.  Ensembl comparative genomics resources , 2016, Database J. Biol. Databases Curation.

[4]  M. Szcześniak,et al.  CANTATAdb: A Collection of Plant Long Non-Coding RNAs , 2015, Plant & cell physiology.

[5]  Wei Wu,et al.  NONCODE 2016: an informative and valuable data source of long non-coding RNAs , 2015, Nucleic Acids Res..

[6]  Fábio C. P. Navarro,et al.  A Genome-Wide Landscape of Retrocopies in Primate Genomes , 2015, Genome biology and evolution.

[7]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[8]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[9]  L. Lipovich,et al.  Pseudogene-derived lncRNAs: emerging regulators of gene expression , 2015, Front. Genet..

[10]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[11]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[12]  Izabela Makałowska,et al.  RetrogeneDB—A Database of Animal Retrogenes , 2014, Molecular biology and evolution.

[13]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[14]  Frank Grützner,et al.  The evolution of lncRNA repertoires and expression patterns in tetrapods , 2014, Nature.

[15]  Manolis Kellis,et al.  Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals , 2014, Genome research.

[16]  David Haussler,et al.  The UCSC Genome Browser database: 2014 update , 2013, Nucleic Acids Res..

[17]  Sarah Geisler,et al.  RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts , 2013, Nature Reviews Molecular Cell Biology.

[18]  Yi Zhao,et al.  Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts , 2013, Nucleic acids research.

[19]  Denise P Barlow,et al.  Gene regulation by the act of long non-coding RNA transcription , 2013, BMC Biology.

[20]  K. Morris,et al.  Long non-coding RNA targeting and transcriptional de-repression. , 2013, Nucleic acid therapeutics.

[21]  K. Morris,et al.  A pseudogene long noncoding RNA network regulates PTEN transcription and translation in human cells , 2013, Nature Structural &Molecular Biology.

[22]  Damian Szklarczyk,et al.  “Orphan” Retrogenes in the Human Genome , 2012, Molecular biology and evolution.

[23]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[24]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[25]  Yan Liu,et al.  Chmp1A acts as a tumor suppressor gene that inhibits proliferation of renal cell carcinoma. , 2012, Cancer Letters.

[26]  J. Goodrich,et al.  Non-coding RNAs: key regulators of mammalian transcription. , 2012, Trends in biochemical sciences.

[27]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[28]  Rasko Leinonen,et al.  The sequence read archive: explosive growth of sequencing data , 2011, Nucleic Acids Res..

[29]  M. Frith,et al.  Adaptive seeds tame genomic sequence comparison. , 2011, Genome research.

[30]  I. Rogozin,et al.  Primate and Rodent Specific Intron Gains and the Origin of Retrogenes with Splice Variants , 2010, Molecular biology and evolution.

[31]  Ross Smith,et al.  Functional diversity of the hnRNPs: past, present and perspectives. , 2010, The Biochemical journal.

[32]  Howard Y. Chang,et al.  Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes , 2010, Science.

[33]  S. Raguz,et al.  Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. , 2010, Molecular cell.

[34]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[35]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[36]  M. Caputi,et al.  Role of Cellular RNA Processing Factors in Human Immunodeficiency Virus Type 1 mRNA Metabolism, Replication, and Infectivity , 2008, Journal of Virology.

[37]  K. Morris,et al.  Bidirectional Transcription Directs Both Transcriptional Gene Activation and Suppression in Human Cells , 2008, PLoS genetics.

[38]  Jing Li,et al.  Chmp1A functions as a novel tumor suppressor gene in human embryonic kidney and ductal pancreatic tumor cells , 2008, Cell cycle.

[39]  A. G. de Herreros,et al.  A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. , 2008, Genes & development.

[40]  Yong Zhang,et al.  CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine , 2007, Nucleic Acids Res..

[41]  S. Hollenberg,et al.  CHMP1 is a novel nuclear matrix protein affecting chromatin structure and cell-cycle progression. , 2001, Journal of cell science.

[42]  S. Hollenberg,et al.  CHMP1 functions as a member of a newly defined family of vesicle trafficking proteins. , 2001, Journal of cell science.

[43]  A. Krainer,et al.  Distinct functions of the closely related tandem RNA-recognition motifs of hnRNP A1. , 1998, RNA.

[44]  P. Fisher,et al.  Suppression of human ribosomal protein L23A expression during cell growth inhibition by interferon-β , 1997, Oncogene.

[45]  A. Krainer,et al.  Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins. , 1994, The EMBO journal.

[46]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[47]  Fabian Sievers,et al.  Clustal Omega, accurate alignment of very large numbers of sequences. , 2014, Methods in molecular biology.

[48]  Melissa C. Greven,et al.  An integrated encyclopedia of DNA elements in the human genome , 2014 .

[49]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..