An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2

[1]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[2]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[3]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[4]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[5]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[6]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[7]  Sylvie Grugeon,et al.  Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries , 2010 .

[8]  J. Sangster N-Na (Nitrogen-Sodium) System , 2004 .

[9]  C. Delmas Alkali metal intercalation in layered oxides , 1989 .

[10]  J. Gopalakrishnan Insertion/extraction of lithium and sodium in transition metal oxides and chalcogenides , 1985 .

[11]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[12]  C. Delmas,et al.  Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .

[13]  M. Whittingham 1 – Intercalation Chemistry: An Introduction , 1982 .