Homoclinic Interactions Near a Triple-Zero Degeneracy in Chua's equation

In this work, we consider some degeneracies of homoclinic and heteroclinic connections organized by the triple-zero degeneracy, in Chua's equation. This allows us to numerically study the homoclinic-heteroclinic transition exhibited by the curve of Takens–Bogdanov bifurcations as it passes through the triple-zero degeneracy. Several codimension-two degenerate homoclinic and heteroclinic connections organized by the triple-zero bifurcation are involved in this transitional homoclinic-heteroclinic mechanism. In particular, we point out that the existence of a curve of T-points and a curve of Belyakov points (its equilibrium passes from saddle to saddle-focus) is necessary for this process to occur. Closed curves of homoclinic connections with different pulses are also found.

[1]  Irene M. Moroz,et al.  On a codimension-three bifurcation arising in a simple dynamo model , 1998 .

[2]  Alejandro J. Rodríguez-Luis,et al.  Analysis of the T-point-Hopf bifurcation , 2008 .

[3]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[4]  F. Dumortier,et al.  Chaotic dynamics in ${\mathbb Z}_2$-equivariant unfoldings of codimension three singularities of vector fields in ${\mathbb R}^3$ , 2000, Ergodic Theory and Dynamical Systems.

[5]  Freddy Dumortier,et al.  New aspects in the unfolding of the nilpotent singularity of codimension three , 2001 .

[6]  Pierre Gaspard,et al.  Complexity in the bifurcation structure of homoclinic loops to a saddle-focus , 1997 .

[7]  Pierre Gaspard,et al.  Generation of a countable set of homoclinic flows through bifurcation , 1983 .

[8]  Raymond Kapral,et al.  Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .

[9]  Yuri A. Kuznetsov,et al.  Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model , 2001, SIAM J. Appl. Math..

[10]  Alejandro J. Rodríguez-Luis,et al.  Nontransversal curves of T-points: a source of closed curves of global bifurcations , 2002 .

[11]  Yu. A. Kuznetsov,et al.  NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .

[12]  Alan R. Champneys,et al.  Homoclinic Branch Switching: a Numerical Implementation of Lin's Method , 2003, Int. J. Bifurc. Chaos.

[13]  Bernd Krauskopf,et al.  Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity , 2003 .

[14]  Colin Sparrow,et al.  Local and global behavior near homoclinic orbits , 1984 .

[15]  M. Blázquez,et al.  Chaotic behavior of orbits close to a heteroclinic contour , 1996 .

[16]  Alejandro J. Rodríguez-Luis,et al.  A Note on the Triple-Zero Linear Degeneracy: Normal Forms, Dynamical and bifurcation Behaviors of an Unfolding , 2002, Int. J. Bifurc. Chaos.

[17]  Antonio Algaba,et al.  Open-to-Closed Curves of saddle-Node bifurcations of Periodic orbits Near a Nontransversal T-Point in Chua's equation , 2006, Int. J. Bifurc. Chaos.

[18]  Leon O. Chua,et al.  On periodic orbits and homoclinic bifurcations in Chua's Circuit with a smooth nonlinearity , 1993, Chua's Circuit.

[19]  V. V. Bykov,et al.  The bifurcations of separatrix contours and chaos , 1993 .

[20]  Chai Wah Wu,et al.  LORENZ EQUATION AND CHUA’S EQUATION , 1996 .

[21]  Leon O. Chua,et al.  ON PERIODIC ORBITS AND HOMOCLINIC BIFURCATIONS IN CHUA’S CIRCUIT WITH A SMOOTH NONLINEARITY , 1993 .

[22]  Antonio Algaba,et al.  Some Results on Chua's equation Near a Triple-Zero Linear Degeneracy , 2003, Int. J. Bifurc. Chaos.

[23]  Antonio Algaba,et al.  Homoclinic Connections Near a Belyakov Point in Chua's equation , 2005, Int. J. Bifurc. Chaos.

[24]  Alejandro J. Rodríguez-Luis,et al.  Structure of saddle-node and cusp bifurcations of periodic orbits near a non-transversal T-point , 2011 .

[25]  Santiago Ibáñez,et al.  Nilpotent Singularities in Generic 4-Parameter Families of 3-Dimensional Vector Fields , 1996 .

[26]  L. A. Belyakov Bifurcation of systems with homoclinic curve of a saddle-focus with saddle quantity zero , 1984 .

[27]  J. A. Rodríguez,et al.  Shil'nikov configurations in any generic unfolding of the nilpotent singularity of codimension three on R3 , 2005 .

[28]  L. A. Belyakov Bifurcation set in a system with homoclinic saddle curve , 1980 .

[29]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[30]  Colin Sparrow,et al.  T-points: A codimension two heteroclinic bifurcation , 1986 .

[31]  Björn Sandstede,et al.  Homoclinic and heteroclinic bifurcations in vector fields , 2010 .

[32]  Michael Peter Kennedy,et al.  The Colpitts oscillator: Families of periodic solutions and their bifurcations , 2000, Int. J. Bifurc. Chaos.

[33]  E. Freire,et al.  T-Points in a Z2-Symmetric Electronic Oscillator. (I) Analysis , 2002 .

[34]  Alejandro J. Rodríguez-Luis,et al.  On the Hopf-Pitchfork bifurcation in the Chua's equation , 2000, Int. J. Bifurc. Chaos.

[35]  Alejandro J. Rodríguez-Luis,et al.  A three-parameter study of a degenerate case of the Hopf-pitchfork bifurcation , 1999 .

[36]  A. Algaba,et al.  Analysis of a Belyakov homoclinic connection with ℤ2-symmetry , 2012 .

[37]  FERNANDO FERNÁNDEZ-SÁNCHEZ,et al.  Bi-spiraling homoclinic Curves around a T-Point in Chua's equation , 2004, Int. J. Bifurc. Chaos.

[38]  Alejandro J. Rodríguez-Luis,et al.  Closed Curves of Global bifurcations in Chua's equation: a Mechanism for their Formation , 2003, Int. J. Bifurc. Chaos.