Homoclinic Interactions Near a Triple-Zero Degeneracy in Chua's equation
暂无分享,去创建一个
Antonio Algaba | Alejandro J. Rodríguez-Luis | Manuel Merino | A. Algaba | A. Rodríguez-Luis | M. Merino
[1] Irene M. Moroz,et al. On a codimension-three bifurcation arising in a simple dynamo model , 1998 .
[2] Alejandro J. Rodríguez-Luis,et al. Analysis of the T-point-Hopf bifurcation , 2008 .
[3] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[4] F. Dumortier,et al. Chaotic dynamics in ${\mathbb Z}_2$-equivariant unfoldings of codimension three singularities of vector fields in ${\mathbb R}^3$ , 2000, Ergodic Theory and Dynamical Systems.
[5] Freddy Dumortier,et al. New aspects in the unfolding of the nilpotent singularity of codimension three , 2001 .
[6] Pierre Gaspard,et al. Complexity in the bifurcation structure of homoclinic loops to a saddle-focus , 1997 .
[7] Pierre Gaspard,et al. Generation of a countable set of homoclinic flows through bifurcation , 1983 .
[8] Raymond Kapral,et al. Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .
[9] Yuri A. Kuznetsov,et al. Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model , 2001, SIAM J. Appl. Math..
[10] Alejandro J. Rodríguez-Luis,et al. Nontransversal curves of T-points: a source of closed curves of global bifurcations , 2002 .
[11] Yu. A. Kuznetsov,et al. NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .
[12] Alan R. Champneys,et al. Homoclinic Branch Switching: a Numerical Implementation of Lin's Method , 2003, Int. J. Bifurc. Chaos.
[13] Bernd Krauskopf,et al. Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity , 2003 .
[14] Colin Sparrow,et al. Local and global behavior near homoclinic orbits , 1984 .
[15] M. Blázquez,et al. Chaotic behavior of orbits close to a heteroclinic contour , 1996 .
[16] Alejandro J. Rodríguez-Luis,et al. A Note on the Triple-Zero Linear Degeneracy: Normal Forms, Dynamical and bifurcation Behaviors of an Unfolding , 2002, Int. J. Bifurc. Chaos.
[17] Antonio Algaba,et al. Open-to-Closed Curves of saddle-Node bifurcations of Periodic orbits Near a Nontransversal T-Point in Chua's equation , 2006, Int. J. Bifurc. Chaos.
[18] Leon O. Chua,et al. On periodic orbits and homoclinic bifurcations in Chua's Circuit with a smooth nonlinearity , 1993, Chua's Circuit.
[19] V. V. Bykov,et al. The bifurcations of separatrix contours and chaos , 1993 .
[20] Chai Wah Wu,et al. LORENZ EQUATION AND CHUA’S EQUATION , 1996 .
[21] Leon O. Chua,et al. ON PERIODIC ORBITS AND HOMOCLINIC BIFURCATIONS IN CHUA’S CIRCUIT WITH A SMOOTH NONLINEARITY , 1993 .
[22] Antonio Algaba,et al. Some Results on Chua's equation Near a Triple-Zero Linear Degeneracy , 2003, Int. J. Bifurc. Chaos.
[23] Antonio Algaba,et al. Homoclinic Connections Near a Belyakov Point in Chua's equation , 2005, Int. J. Bifurc. Chaos.
[24] Alejandro J. Rodríguez-Luis,et al. Structure of saddle-node and cusp bifurcations of periodic orbits near a non-transversal T-point , 2011 .
[25] Santiago Ibáñez,et al. Nilpotent Singularities in Generic 4-Parameter Families of 3-Dimensional Vector Fields , 1996 .
[26] L. A. Belyakov. Bifurcation of systems with homoclinic curve of a saddle-focus with saddle quantity zero , 1984 .
[27] J. A. Rodríguez,et al. Shil'nikov configurations in any generic unfolding of the nilpotent singularity of codimension three on R3 , 2005 .
[28] L. A. Belyakov. Bifurcation set in a system with homoclinic saddle curve , 1980 .
[29] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .
[30] Colin Sparrow,et al. T-points: A codimension two heteroclinic bifurcation , 1986 .
[31] Björn Sandstede,et al. Homoclinic and heteroclinic bifurcations in vector fields , 2010 .
[32] Michael Peter Kennedy,et al. The Colpitts oscillator: Families of periodic solutions and their bifurcations , 2000, Int. J. Bifurc. Chaos.
[33] E. Freire,et al. T-Points in a Z2-Symmetric Electronic Oscillator. (I) Analysis , 2002 .
[34] Alejandro J. Rodríguez-Luis,et al. On the Hopf-Pitchfork bifurcation in the Chua's equation , 2000, Int. J. Bifurc. Chaos.
[35] Alejandro J. Rodríguez-Luis,et al. A three-parameter study of a degenerate case of the Hopf-pitchfork bifurcation , 1999 .
[36] A. Algaba,et al. Analysis of a Belyakov homoclinic connection with ℤ2-symmetry , 2012 .
[37] FERNANDO FERNÁNDEZ-SÁNCHEZ,et al. Bi-spiraling homoclinic Curves around a T-Point in Chua's equation , 2004, Int. J. Bifurc. Chaos.
[38] Alejandro J. Rodríguez-Luis,et al. Closed Curves of Global bifurcations in Chua's equation: a Mechanism for their Formation , 2003, Int. J. Bifurc. Chaos.