A Regularizing Parameter for Some Fredholm Integral Equations

Abstract The regularizing parameter appearing in some Fredholm integral equations of the second kind is discussed. Theoretical estimates and the results of numerical tests confirming the theoretical expectations are given.

[1]  József Szabados,et al.  POLYNOMIAL APPROXIMATION ON THE REAL SEMIAXIS WITH GENERALIZED LAGUERRE WEIGHTS , 2007 .

[2]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[3]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[4]  L. Fermo A Nyström method for a class of Fredholm integral equations of the third kind on unbounded domains , 2009 .

[5]  Gradimir V. Milovanović,et al.  Some numerical methods for second-kind Fredholm integral equations on the real semiaxis , 2009 .

[6]  L. Fermo,et al.  A Nyström method for Fredholm integral equations with right-hand sides having isolated singularities , 2009 .

[7]  Doron S. Lubinsky,et al.  Erratum: Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[8]  Luisa Fermo,et al.  Numerical methods for Fredholm integral equations with singular right-hand sides , 2010, Adv. Comput. Math..

[9]  Giuseppe Mastroianni,et al.  Gaussian rules on unbounded intervals , 2003, J. Complex..

[10]  Giovanni Monegato,et al.  Truncated Quadrature Rules Over (0, INFINITY) and Nyström-Type Methods , 2003, SIAM J. Numer. Anal..

[11]  WALTER GAUTSCHI Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.

[12]  A. L. Levin,et al.  Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[13]  Aleksandar S. Cvetković,et al.  THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .

[14]  Giuseppe Mastroianni,et al.  LAGRANGE INTERPOLATION IN SOME WEIGHTED UNIFORM SPACES , 2012 .