Defining new linear functions in tame expansions of the real ordered additive group

We explore semibounded expansions of arbitrary ordered groups; namely, expansions that do not define a field on the whole universe. For R = 〈R,<,+, . . .〉, a semibounded o-minimal structure and P ⊆ R a set satisfying certain tameness conditions, we discuss under which conditions 〈R, P 〉 defines total linear functions that are not definable in R. Examples of such structures that does define new total linear functions include the cases when R is a reduct of 〈R, <,+, ·↾(0,1)2 , (x 7→ λx)λ∈I⊆R〉, and P = 2 Z, or P is an iteration sequence (for any I) or P = Z, for I = Q.

[1]  Carlo Toffalori,et al.  Notes on local o-minimality , 2009, Math. Log. Q..

[2]  Locally o-minimal structures , 2012 .

[3]  Ya'acov Peterzil Returning to semi-bounded sets , 2009, J. Symb. Log..

[4]  Pantelis E. Eleftheriou,et al.  Coverings by open cells , 2013, Arch. Math. Log..

[5]  Ya'acov Peterzil,et al.  Additive reducts of real closed fields , 1992, Journal of Symbolic Logic (JSL).

[6]  John R. Myhill Solution of a Problem of Tarski , 1956, J. Symb. Log..

[7]  Philipp Hieronymi Defining the set of integers in expansions of the real field by a closed discrete set , 2009, 0906.4972.

[8]  Lou van den Dries Dense pairs of o-minimal structures , 1998 .

[9]  A. Fornasiero,et al.  How to avoid a compact set , 2016, 1612.00785.

[10]  Lou van den Dries,et al.  The field of reals with a predicate for the powers of two , 1985 .

[11]  Christopher L. Miller Expansions of Dense Linear Orders with The Intermediate Value Property , 2001, J. Symb. Log..

[12]  Françoise Delon $\mathbb{Q}$ muni de l'arithmetique faible de Penzin est decidable , 1997 .

[13]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[14]  Anand Pillay,et al.  Discrete o-minimal structures , 1987, Ann. Pure Appl. Log..

[15]  Philipp Hieronymi,et al.  EXPANSIONS OF THE ORDERED ADDITIVE GROUP OF REAL NUMBERS BY TWO DISCRETE SUBGROUPS , 2014, The Journal of Symbolic Logic.

[16]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[17]  Mário J. Edmundo,et al.  Structure Theorems for o-Minimal Expansions of Groups , 2000, Ann. Pure Appl. Log..

[18]  Chris Miller,et al.  Expansions of o-Minimal Structures by Iteration Sequences , 2006, Notre Dame J. Formal Log..

[19]  Anand Pillay,et al.  Between Groups and rings , 1989 .

[20]  Chris Miller,et al.  Metric dimensions and tameness in expansions of the real field , 2015, Transactions of the American Mathematical Society.

[21]  Chris Miller,et al.  Expansions of o-minimal structures by fast sequences , 2005, J. Symb. Log..

[22]  Pantelis E. Eleftheriou Local analysis for semi-bounded groups , 2012 .

[23]  Ya'acov Peterzil,et al.  A structure theorem for semibounded sets in the reals , 1992, Journal of Symbolic Logic.

[24]  A. Pillay,et al.  DEFINABLE SETS IN ORDERED STRUCTURES. I , 1986 .