COUPLED-CLUSTER THEORY EMPLOYING APPROXIMATE INTEGRALS : AN APPROACH TO AVOID THE INPUT/OUTPUT AND STORAGE BOTTLENECKS

By representing orbital products in an expansion basis, certain classes of two‐electron integrals are approximated for use in CCSD(T) calculations (singles and doubles coupled‐cluster plus a perturbational estimate of the effects of connected triple excitations). This leads to a very large reduction in disk storage and input/output requirements, with usually only a modest increase in computational effort. The new procedure will allow very large CCSD(T) calculations to be undertaken, limited only by available processor time. Using the molecular basis as the expansion basis, explicit numerical comparisons of equilibrium geometries, harmonic frequencies, and energy differences indicate that the error due to the use of approximate integrals is less than the error associated with truncation of the molecular basis set.

[1]  Svein Saebo,et al.  Avoiding the integral storage bottleneck in LCAO calculations of electron correlation , 1989 .

[2]  Timothy J. Lee,et al.  An extensive ab initio study of the structures, vibrational spectra, quadratic force fields, and relative energetics of three isomers of Cl2O2 , 1992 .

[3]  Roland Lindh,et al.  The reduced multiplication scheme of the Rys quadrature and new recurrence relations for auxiliary function based two‐electron integral evaluation , 1991 .

[4]  Alistair P. Rendell,et al.  Distributed data parallel coupled‐cluster algorithm: Application to the 2‐hydroxypyridine/2‐pyridone tautomerism , 1993, J. Comput. Chem..

[5]  S. Bauer,et al.  An electron diffraction study of the structures of cis- and transN2F2 , 1967 .

[6]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[7]  Michael J. Frisch,et al.  Semi-direct algorithms for the MP2 energy and gradient , 1990 .

[8]  Josef Paldus,et al.  Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst†‡§ , 1971 .

[9]  G. Bacskay,et al.  Ab initio potential energy surface and vibrational frequencies of N2O , 1993 .

[10]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[11]  Alistair P. Rendell,et al.  Evaluation of the contribution from triply excited intermediates to the fourth-order perturbation theory energy on Intel distributed memory supercomputers , 1993 .

[12]  M. Horn,et al.  Calculated Spectroscopic Constants and the Equilibrium Geometry of HCNH , 1994 .

[13]  Reinhart Ahlrichs,et al.  Semidirect MP2 gradient evaluation on workstation computers: The MPGRAD program , 1993, J. Comput. Chem..

[14]  Donald G. Truhlar,et al.  Systematic study of basis set superposition errors in the calculated interaction energy of two HF molecules , 1985 .

[15]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[16]  J. Koput On the r0∗ structure and the torsional potential function of hydrogen peroxide , 1986 .

[17]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[18]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[19]  Alistair P. Rendell,et al.  Comparison of the quadratic configuration interaction and coupled cluster approaches to electron correlation including the effect of triple excitations , 1990 .

[20]  Alistair P. Rendell,et al.  Vibrational frequencies for Be3 and Be4 , 1990 .

[21]  P. Taylor,et al.  An accurate ab initio quartic force field for ammonia , 1992 .

[22]  Timothy J. Lee,et al.  FONO : a difficult case for theory and experiment , 1992 .

[23]  H. Schaefer,et al.  Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: determination of the equilibrium structures of FOOF, (NO)2 and FNNF and the transition state structure for FNNF cis-trans isomerization , 1989 .

[24]  Alistair P. Rendell,et al.  Quantum chemistry on parallel computer architectures: coupled-cluster theory applied to the bending potential of fulminic acid , 1992 .

[25]  R. Bartlett,et al.  Optimized virtual orbital space for high‐level correlated calculations , 1987 .

[26]  Gustavo E. Scuseria,et al.  The vibrational frequencies of ozone , 1990 .

[27]  Peter R. Taylor,et al.  Integral processing in beyond-Hartree-Fock calculations , 1987 .

[28]  R. L. Kuczkowski,et al.  Microwave Spectrum, Structure, and Dipole Moment of ``Cis''‐N2F2 , 1963 .

[29]  Timothy J. Lee,et al.  Accurate ab initio quartic force fields for borane and BeH2 , 1992 .

[30]  Alistair P. Rendell,et al.  A parallel vectorized implementation of triple excitations in CCSD(T): application to the binding energies of the AlH3, AlH2F, AlHF2 and AlF3 dimers , 1991 .

[31]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[32]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[33]  D. L. Gray,et al.  The anharmonic force field and equilibrium structure of methane , 1979 .

[34]  Curtis L. Janssen,et al.  An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations , 1988 .

[35]  Julia E. Rice,et al.  An efficient closed-shell singles and doubles coupled-cluster method , 1988 .

[36]  Ian M. Mills,et al.  Anharmonic force constant calculations , 1972 .

[37]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[38]  Gustavo E. Scuseria,et al.  Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2 , 1991 .

[39]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[40]  J. L. Duncan,et al.  The calculation of force constants and normal coordinates—IV XH4 and XH3 molecules , 1964 .

[41]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[42]  Alistair P. Rendell,et al.  The structure and energetics of the HCN → HNC transition state , 1991 .