Robust Control Charts for Monitoring Process Mean of Phase-I Multivariate Individual Observations

Hoteling's control charts are widely used in industries to monitor multivariate processes. The classical estimators, sample mean, and the sample covariance used in control charts are highly sensitive to the outliers in the data. In Phase-I monitoring, control limits are arrived at using historical data after identifying and removing the multivariate outliers. We propose Hoteling's control charts with high-breakdown robust estimators based on the reweighted minimum covariance determinant (RMCD) and the reweighted minimum volume ellipsoid (RMVE) to monitor multivariate observations in Phase-I data. We assessed the performance of these robust control charts based on a large number of Monte Carlo simulations by considering different data scenarios and found that the proposed control charts have better performance compared to existing methods.

[1]  Stefan H. Steiner,et al.  A Multivariate Robust Control Chart for Individual Observations , 2009 .

[2]  Dankmar Böhning,et al.  The lower bound method in probit regression , 1999 .

[3]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[4]  Nola D. Tracy,et al.  Multivariate Control Charts for Individual Observations , 1992 .

[5]  William H. Woodall,et al.  A Comparison of Multivariate Control Charts for Individual Observations , 1996 .

[6]  P. L. Davies,et al.  The asymptotics of Rousseeuw's minimum volume ellipsoid estimator , 1992 .

[7]  W. A. Wallis,et al.  Techniques of Statistical Analysis. , 1950 .

[8]  P. Rousseeuw,et al.  Breakdown Points of Affine Equivariant Estimators of Multivariate Location and Covariance Matrices , 1991 .

[9]  Christophe Croux,et al.  An easy way to increase the finite-sample efficiency of the resampled minimum volume ellipsoid estimator , 1997 .

[10]  David M. Rocke,et al.  Computable Robust Estimation of Multivariate Location and Shape in High Dimension Using Compound Estimators , 1994 .

[11]  N. José Alberto Vargas,et al.  Robust Estimation in Multivariate Control Charts for Individual Observations , 2003 .

[12]  H. Hotelling,et al.  Multivariate Quality Control , 1947 .

[13]  Douglas M. Hawkins,et al.  Improved Feasible Solution Algorithms for High Breakdown Estimation , 1999 .

[14]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[15]  G. Willems,et al.  Small sample corrections for LTS and MCD , 2002 .

[16]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[17]  C. Croux,et al.  Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator , 1999 .

[18]  William H. Woodall,et al.  High breakdown estimation methods for Phase I multivariate control charts , 2007, Qual. Reliab. Eng. Int..

[19]  P. L. Davies,et al.  Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices , 1987 .