Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential.

The phase-change material, Ge2Sb2Te5, is the canonical material ingredient for next-generation storage-class memory devices used in novel computing architectures, but fundamental questions remain regarding its atomic structure and physicochemical properties. Here, we introduce a machine-learning (ML)-based interatomic potential that enables large-scale atomistic simulations of liquid, amorphous, and crystalline Ge2Sb2Te5 with an unprecedented combination of speed and density functional theory (DFT) level of accuracy. Two applications exemplify the usefulness of such an ML-driven approach: we generate a 7200-atom structural model, hitherto inaccessible with DFT simulations, that affords new insight into the medium-range structural order and we create an ensemble of uncorrelated, smaller structures, for studies of their chemical bonding with statistical significance. Our work opens the way for new atomistic insights into the fascinating and chemically complex class of phase-change materials that are used in real nonvolatile memory devices.

[1]  Wei Zhang,et al.  Role of vacancies in metal-insulator transitions of crystalline phase-change materials. , 2012, Nature materials.

[2]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[3]  J. Tominaga,et al.  Pressure-induced amorphization of quasibinary GeTe–Sb2Te3: The role of vacancies , 2007 .

[4]  J. Hosson,et al.  Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of Gexsb2Te3+x (x=1,2,3) phase change material , 2002 .

[5]  Eric Pop,et al.  Phase change materials and phase change memory , 2014 .

[6]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[7]  Matthias Wuttig,et al.  Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .

[8]  S. Elliott,et al.  The Relation between Chemical Bonding and Ultrafast Crystal Growth , 2017, Advanced materials.

[9]  I. Kaban,et al.  ‘Wrong bonds’ in sputtered amorphous Ge2Sb2Te5 , 2007, Journal of Physics: Condensed Matter.

[10]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[11]  R. O. Jones,et al.  Density functional study of amorphous, liquid and crystalline Ge2Sb2Te5: homopolar bonds and/or AB alternation? , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Jörg Behler,et al.  Atomistic Simulations of the Crystallization and Aging of GeTe Nanowires , 2017 .

[13]  Richard Dronskowski,et al.  Bonding nature of local structural motifs in amorphous GeTe. , 2014, Angewandte Chemie.

[14]  Richard Dronskowski,et al.  The role of vacancies and local distortions in the design of new phase-change materials. , 2007, Nature materials.

[15]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[16]  Stephen R. Elliott,et al.  Computer‐simulation design of new phase‐change memory materials , 2010 .

[17]  Reinhard Nesper,et al.  A New Look at Electron Localization , 1991 .

[18]  J. Behler,et al.  Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe , 2015 .

[19]  R. O. Jones,et al.  Amorphous Ge15Te85: density functional, high-energy x-ray and neutron diffraction study , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  Richard Dronskowski,et al.  Microscopic Complexity in Phase‐Change Materials and its Role for Applications , 2015 .

[21]  Gábor Csányi,et al.  Gaussian approximation potentials: A brief tutorial introduction , 2015, 1502.01366.

[22]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[23]  Pablo G. Debenedetti,et al.  Relationship between structural order and the anomalies of liquid water , 2001, Nature.

[24]  Noboru Yamada,et al.  Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states , 2006 .

[25]  Matthias Wuttig,et al.  Aging mechanisms in amorphous phase-change materials , 2015, Nature Communications.

[26]  Jörg Behler,et al.  Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations. , 2013, The journal of physical chemistry letters.

[27]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[28]  Volker L. Deringer,et al.  Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures. , 2017, The Journal of chemical physics.

[29]  M. Micoulaut,et al.  Communication: Van der Waals corrections for an improved structural description of telluride based materials. , 2013, The Journal of chemical physics.

[30]  P.-L. Chau,et al.  A new order parameter for tetrahedral configurations , 1998 .

[31]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[32]  Noam Bernstein,et al.  Machine learning unifies the modeling of materials and molecules , 2017, Science Advances.

[33]  M. Parrinello,et al.  Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials , 2007, 0708.1302.

[34]  Jörg Behler,et al.  Dynamical heterogeneity in the supercooled liquid state of the phase change material GeTe. , 2014, The journal of physical chemistry. B.

[35]  Richard Dronskowski,et al.  Density-functional theory guided advances in phase-change materials and memories , 2015 .

[36]  J. Tominaga,et al.  Athermal amorphization of crystallized chalcogenide glasses and phase‐change alloys , 2014 .

[37]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[38]  Alessandro Curioni,et al.  Reactive potential for the study of phase-change materials: GeTe , 2013 .

[39]  Noam Bernstein,et al.  Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics. , 2018, The journal of physical chemistry letters.