Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential.
暂无分享,去创建一个
Noam Bernstein | Volker L. Deringer | Gábor Csányi | Tae Hoon Lee | Volker L Deringer | Stephen R Elliott | Gábor Csányi | N. Bernstein | T. Lee | F. Mocanu | Felix C Mocanu | Konstantinos Konstantinou | K. Konstantinou | S. Elliott | T. Lee
[1] Wei Zhang,et al. Role of vacancies in metal-insulator transitions of crystalline phase-change materials. , 2012, Nature materials.
[2] A. Savin,et al. Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.
[3] J. Tominaga,et al. Pressure-induced amorphization of quasibinary GeTe–Sb2Te3: The role of vacancies , 2007 .
[4] J. Hosson,et al. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of Gexsb2Te3+x (x=1,2,3) phase change material , 2002 .
[5] Eric Pop,et al. Phase change materials and phase change memory , 2014 .
[6] A. Stukowski. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .
[7] Matthias Wuttig,et al. Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .
[8] S. Elliott,et al. The Relation between Chemical Bonding and Ultrafast Crystal Growth , 2017, Advanced materials.
[9] I. Kaban,et al. ‘Wrong bonds’ in sputtered amorphous Ge2Sb2Te5 , 2007, Journal of Physics: Condensed Matter.
[10] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[11] R. O. Jones,et al. Density functional study of amorphous, liquid and crystalline Ge2Sb2Te5: homopolar bonds and/or AB alternation? , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.
[12] Jörg Behler,et al. Atomistic Simulations of the Crystallization and Aging of GeTe Nanowires , 2017 .
[13] Richard Dronskowski,et al. Bonding nature of local structural motifs in amorphous GeTe. , 2014, Angewandte Chemie.
[14] Richard Dronskowski,et al. The role of vacancies and local distortions in the design of new phase-change materials. , 2007, Nature materials.
[15] S. Elliott,et al. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.
[16] Stephen R. Elliott,et al. Computer‐simulation design of new phase‐change memory materials , 2010 .
[17] Reinhard Nesper,et al. A New Look at Electron Localization , 1991 .
[18] J. Behler,et al. Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe , 2015 .
[19] R. O. Jones,et al. Amorphous Ge15Te85: density functional, high-energy x-ray and neutron diffraction study , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[20] Richard Dronskowski,et al. Microscopic Complexity in Phase‐Change Materials and its Role for Applications , 2015 .
[21] Gábor Csányi,et al. Gaussian approximation potentials: A brief tutorial introduction , 2015, 1502.01366.
[22] Steve Plimpton,et al. Fast parallel algorithms for short-range molecular dynamics , 1993 .
[23] Pablo G. Debenedetti,et al. Relationship between structural order and the anomalies of liquid water , 2001, Nature.
[24] Noboru Yamada,et al. Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states , 2006 .
[25] Matthias Wuttig,et al. Aging mechanisms in amorphous phase-change materials , 2015, Nature Communications.
[26] Jörg Behler,et al. Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations. , 2013, The journal of physical chemistry letters.
[27] M. Wuttig,et al. Phase-change materials for rewriteable data storage. , 2007, Nature materials.
[28] Volker L. Deringer,et al. Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures. , 2017, The Journal of chemical physics.
[29] M. Micoulaut,et al. Communication: Van der Waals corrections for an improved structural description of telluride based materials. , 2013, The Journal of chemical physics.
[30] P.-L. Chau,et al. A new order parameter for tetrahedral configurations , 1998 .
[31] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .
[32] Noam Bernstein,et al. Machine learning unifies the modeling of materials and molecules , 2017, Science Advances.
[33] M. Parrinello,et al. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials , 2007, 0708.1302.
[34] Jörg Behler,et al. Dynamical heterogeneity in the supercooled liquid state of the phase change material GeTe. , 2014, The journal of physical chemistry. B.
[35] Richard Dronskowski,et al. Density-functional theory guided advances in phase-change materials and memories , 2015 .
[36] J. Tominaga,et al. Athermal amorphization of crystallized chalcogenide glasses and phase‐change alloys , 2014 .
[37] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[38] Alessandro Curioni,et al. Reactive potential for the study of phase-change materials: GeTe , 2013 .
[39] Noam Bernstein,et al. Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics. , 2018, The journal of physical chemistry letters.