An exact general remeshing scheme applied to physically conservative voxelization
暂无分享,去创建一个
Tom Abel | Devon Powell | T. Abel | Devon Powell | Tom Abel
[1] Michael S. Warren. 2HOT: An improved parallel hashed oct-tree N-Body algorithm for cosmological simulation , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).
[2] M. Karasick. On the representation and manipulation of rigid solids , 1989 .
[3] John E. Hopcroft,et al. Towards implementing robust geometric computations , 1988, SCG '88.
[4] Kokichi Sugihara,et al. A Robust and Consistent Algorithm for Intersecting Convex Polyhedra , 1994, Comput. Graph. Forum.
[5] Martin A. Eisenberg,et al. On finite element integration in natural co‐ordinates , 1973 .
[6] Veselin Dobrev,et al. Monotonicity in high‐order curvilinear finite element arbitrary Lagrangian–Eulerian remap , 2015 .
[7] S. F. Bockman,et al. Generalizing the formula for areas of polygons to moments , 1989 .
[8] M. G. Stone. A Mnemonic for Areas of Polygons , 1986 .
[9] W. Randolph Franklin. Polygon properties calculated from the vertex neighborhoods , 1987, SCG '87.
[10] Kokichi Sugihara,et al. A solid modelling system free from topological inconsistency , 1990 .
[11] Marcel Vinokur,et al. Exact Integrations of Polynomials and Symmetric Quadrature Formulas over Arbitrary Polyhedral Grids , 1998 .
[12] Wing Kam Liu,et al. Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .
[13] Jesús A. De Loera,et al. Software for exact integration of polynomials over polyhedra , 2011, ACCA.
[14] Tom Abel,et al. Towards noiseless gravitational lensing simulations , 2013, 1309.1161.
[15] Jeffrey Grandy,et al. Conservative Remapping and Region Overlays by Intersecting Arbitrary Polyhedra , 1999 .
[16] A. James Stewart. Local Robustness and its Application to Polyhedral Intersection , 1994, Int. J. Comput. Geom. Appl..
[17] Ralf Kähler,et al. A Novel Approach to Visualizing Dark Matter Simulations , 2012, IEEE Transactions on Visualization and Computer Graphics.
[18] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[19] A. Huerta,et al. Arbitrary Lagrangian–Eulerian Methods , 2004 .
[20] Edwin E. Catmull,et al. A hidden-surface algorithm with anti-aliasing , 1978, SIGGRAPH.
[21] M. Neyrinck. zobov: a parameter-free void-finding algorithm , 2007, 0712.3049.
[22] Michael Wimmer,et al. Sampled and Analytic Rasterization , 2013, VMV.
[23] C. W. Hirt,et al. Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .
[24] Mohan S. Kankanhalli,et al. Volumes From Overlaying 3-D Triangulations in Parallel , 1993, SSD.
[25] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.
[26] B. Bruderlin. Robust regularized set operations on polyhedra , 1991, Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences.
[27] J. Li,et al. Numerical simulation of moving contact line problems using a volume-of-fluid method , 2001 .
[28] Julio Hernández,et al. Analytical and geometrical tools for 3D volume of fluid methods in general grids , 2008, J. Comput. Phys..
[29] Oliver Hahn,et al. An adaptively refined phase–space element method for cosmological simulations and collisionless dynamics , 2015, 1501.01959.
[30] Raphaël Loubère,et al. ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..
[31] Henry N. Christiansen,et al. A polyhedron clipping and capping algorithm and a display system for three dimensional finite element models , 1975, COMG.
[32] Volker Springel,et al. Particle hydrodynamics with tessellation techniques , 2009, 0912.0629.
[33] Stefan Jeschke,et al. Analytic Anti‐Aliasing of Linear Functions on Polytopes , 2012, Comput. Graph. Forum.
[34] A. Jameson,et al. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .
[35] James A. Liggett. Exact formulae for areas, volumes and moments of polygons and polyhedra , 1988 .
[36] V. Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.
[37] Mikhail Shashkov,et al. An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes , 2007 .
[38] A. Dobrovolskis,et al. INERTIA OF ANY POLYHEDRON , 1996 .
[39] John K. Dukowicz,et al. Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .
[40] R W Hockney,et al. Computer Simulation Using Particles , 1966 .
[41] Oliver Hahn,et al. A new approach to simulating collisionless dark matter fluids , 2012, 1210.6652.
[42] Victor J. Milenkovic,et al. Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..
[43] W. Randolph Franklin. Rays - New representation for polygons and polyhedra , 1983, Comput. Vis. Graph. Image Process..
[44] Oliver Hahn,et al. Tracing the dark matter sheet in phase space , 2011, 1111.3944.
[45] Devin W. Silvia,et al. ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, 1307.2265.
[46] Oliver Hahn,et al. The properties of cosmic velocity fields , 2014, 1404.2280.
[47] Brian Mirtich,et al. Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.
[48] Hal Finkel,et al. The Universe at extreme scale: Multi-petaflop sky simulation on the BG/Q , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.
[49] Michael Kuhlen,et al. Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.
[50] M. Iri,et al. Two Design Principles of Geometric Algorithms in Finite-Precision Arithmetic , 1989 .
[51] Len G. Margolin,et al. Second-order sign-preserving conservative interpolation (remapping) on general grids , 2003 .
[52] Ivan E. Sutherland,et al. Reentrant polygon clipping , 1974, Commun. ACM.
[53] R. Teyssier. A new high resolution code called RAMSES , 2008 .
[54] Jean M. Sexton,et al. Nyx: A MASSIVELY PARALLEL AMR CODE FOR COMPUTATIONAL COSMOLOGY , 2013, J. Open Source Softw..
[55] Jacopo Pantaleoni,et al. VoxelPipe: a programmable pipeline for 3D voxelization , 2011, HPG '11.
[56] David S. Ebert,et al. Conservative voxelization , 2007, The Visual Computer.
[57] A. Klypin,et al. Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.