An exact general remeshing scheme applied to physically conservative voxelization

We present an exact general remeshing scheme to compute analytic integrals of polynomial functions over the intersections between convex polyhedral cells of old and new meshes. In physics applications this allows one to ensure global mass, momentum, and energy conservation while applying higher-order polynomial interpolation. We elaborate on applications of our algorithm arising in the analysis of cosmological N-body data, computer graphics, and continuum mechanics problems.We focus on the particular case of remeshing tetrahedral cells onto a Cartesian grid such that the volume integral of the polynomial density function given on the input mesh is guaranteed to equal the corresponding integral over the output mesh. We refer to this as "physically conservative voxelization."At the core of our method is an algorithm for intersecting two convex polyhedra by successively clipping one against the faces of the other. This algorithm is an implementation of the ideas presented abstractly by Sugihara 48], who suggests using the planar graph representations of convex polyhedra to ensure topological consistency of the output. This makes our implementation robust to geometric degeneracy in the input. We employ a simplicial decomposition to calculate moment integrals up to quadratic order over the resulting intersection domain.We also address practical issues arising in a software implementation, including numerical stability in geometric calculations, management of cancellation errors, and extension to two dimensions. In a comparison to recent work, we show substantial performance gains. We provide a C implementation intended to be a fast, accurate, and robust tool for geometric calculations on polyhedral mesh elements.

[1]  Michael S. Warren 2HOT: An improved parallel hashed oct-tree N-Body algorithm for cosmological simulation , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[2]  M. Karasick On the representation and manipulation of rigid solids , 1989 .

[3]  John E. Hopcroft,et al.  Towards implementing robust geometric computations , 1988, SCG '88.

[4]  Kokichi Sugihara,et al.  A Robust and Consistent Algorithm for Intersecting Convex Polyhedra , 1994, Comput. Graph. Forum.

[5]  Martin A. Eisenberg,et al.  On finite element integration in natural co‐ordinates , 1973 .

[6]  Veselin Dobrev,et al.  Monotonicity in high‐order curvilinear finite element arbitrary Lagrangian–Eulerian remap , 2015 .

[7]  S. F. Bockman,et al.  Generalizing the formula for areas of polygons to moments , 1989 .

[8]  M. G. Stone A Mnemonic for Areas of Polygons , 1986 .

[9]  W. Randolph Franklin Polygon properties calculated from the vertex neighborhoods , 1987, SCG '87.

[10]  Kokichi Sugihara,et al.  A solid modelling system free from topological inconsistency , 1990 .

[11]  Marcel Vinokur,et al.  Exact Integrations of Polynomials and Symmetric Quadrature Formulas over Arbitrary Polyhedral Grids , 1998 .

[12]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[13]  Jesús A. De Loera,et al.  Software for exact integration of polynomials over polyhedra , 2011, ACCA.

[14]  Tom Abel,et al.  Towards noiseless gravitational lensing simulations , 2013, 1309.1161.

[15]  Jeffrey Grandy,et al.  Conservative Remapping and Region Overlays by Intersecting Arbitrary Polyhedra , 1999 .

[16]  A. James Stewart Local Robustness and its Application to Polyhedral Intersection , 1994, Int. J. Comput. Geom. Appl..

[17]  Ralf Kähler,et al.  A Novel Approach to Visualizing Dark Matter Simulations , 2012, IEEE Transactions on Visualization and Computer Graphics.

[18]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[19]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[20]  Edwin E. Catmull,et al.  A hidden-surface algorithm with anti-aliasing , 1978, SIGGRAPH.

[21]  M. Neyrinck zobov: a parameter-free void-finding algorithm , 2007, 0712.3049.

[22]  Michael Wimmer,et al.  Sampled and Analytic Rasterization , 2013, VMV.

[23]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[24]  Mohan S. Kankanhalli,et al.  Volumes From Overlaying 3-D Triangulations in Parallel , 1993, SSD.

[25]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[26]  B. Bruderlin Robust regularized set operations on polyhedra , 1991, Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences.

[27]  J. Li,et al.  Numerical simulation of moving contact line problems using a volume-of-fluid method , 2001 .

[28]  Julio Hernández,et al.  Analytical and geometrical tools for 3D volume of fluid methods in general grids , 2008, J. Comput. Phys..

[29]  Oliver Hahn,et al.  An adaptively refined phase–space element method for cosmological simulations and collisionless dynamics , 2015, 1501.01959.

[30]  Raphaël Loubère,et al.  ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..

[31]  Henry N. Christiansen,et al.  A polyhedron clipping and capping algorithm and a display system for three dimensional finite element models , 1975, COMG.

[32]  Volker Springel,et al.  Particle hydrodynamics with tessellation techniques , 2009, 0912.0629.

[33]  Stefan Jeschke,et al.  Analytic Anti‐Aliasing of Linear Functions on Polytopes , 2012, Comput. Graph. Forum.

[34]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[35]  James A. Liggett Exact formulae for areas, volumes and moments of polygons and polyhedra , 1988 .

[36]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[37]  Mikhail Shashkov,et al.  An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes , 2007 .

[38]  A. Dobrovolskis,et al.  INERTIA OF ANY POLYHEDRON , 1996 .

[39]  John K. Dukowicz,et al.  Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations , 1987 .

[40]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[41]  Oliver Hahn,et al.  A new approach to simulating collisionless dark matter fluids , 2012, 1210.6652.

[42]  Victor J. Milenkovic,et al.  Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..

[43]  W. Randolph Franklin Rays - New representation for polygons and polyhedra , 1983, Comput. Vis. Graph. Image Process..

[44]  Oliver Hahn,et al.  Tracing the dark matter sheet in phase space , 2011, 1111.3944.

[45]  Devin W. Silvia,et al.  ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, 1307.2265.

[46]  Oliver Hahn,et al.  The properties of cosmic velocity fields , 2014, 1404.2280.

[47]  Brian Mirtich,et al.  Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.

[48]  Hal Finkel,et al.  The Universe at extreme scale: Multi-petaflop sky simulation on the BG/Q , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[49]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[50]  M. Iri,et al.  Two Design Principles of Geometric Algorithms in Finite-Precision Arithmetic , 1989 .

[51]  Len G. Margolin,et al.  Second-order sign-preserving conservative interpolation (remapping) on general grids , 2003 .

[52]  Ivan E. Sutherland,et al.  Reentrant polygon clipping , 1974, Commun. ACM.

[53]  R. Teyssier A new high resolution code called RAMSES , 2008 .

[54]  Jean M. Sexton,et al.  Nyx: A MASSIVELY PARALLEL AMR CODE FOR COMPUTATIONAL COSMOLOGY , 2013, J. Open Source Softw..

[55]  Jacopo Pantaleoni,et al.  VoxelPipe: a programmable pipeline for 3D voxelization , 2011, HPG '11.

[56]  David S. Ebert,et al.  Conservative voxelization , 2007, The Visual Computer.

[57]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.