Golden channel at a neutrino factory revisited: Improved sensitivities from a magnetized iron neutrino detector

This paper describes the performance and sensitivity to neutrino mixing parameters of a Magnetised Iron Neutrino Detector at a Neutrino Factory with a neutrino beam created from the decay of 10 GeV muons. Specifically, it is concerned with the ability of such a detector to detect muons of the opposite sign to those stored (wrong-sign muons) while suppressing contamination of the signal from the interactions of other neutrino species in the beam. A new, more realistic simulation and analysis, which improves the efficiency of this detector at low energies, has been developed using the GENIE neutrino event generator and the GEANT4 simulation toolkit. Low-energy neutrino events down to 1 GeV were selected, while reducing backgrounds to the ${10}^{\ensuremath{-}4}$ level. Signal efficiency plateaus of $\ensuremath{\sim}60%$ for ${\ensuremath{\nu}}_{\ensuremath{\mu}}$ and $\ensuremath{\sim}70%$ for ${\overline{\ensuremath{\nu}}}_{\ensuremath{\mu}}$ events were achieved starting at $\ensuremath{\sim}5\text{ }\text{ }\mathrm{GeV}$. Contamination from the ${\ensuremath{\nu}}_{\ensuremath{\mu}}\ensuremath{\rightarrow}{\ensuremath{\nu}}_{\ensuremath{\tau}}$ oscillation channel was studied for the first time and was found to be at the level between 1% and 4%. Full response matrices are supplied for all the signal and background channels from 1 GeV to 10 GeV. The sensitivity of an experiment involving a Magnetised Iron Neutrino Detector detector of 100 ktons at 2000 km from the Neutrino Factory is calculated for the case of ${sin}^{2}2{\ensuremath{\theta}}_{13}\ensuremath{\sim}{10}^{\ensuremath{-}1}$. For this value of ${\ensuremath{\theta}}_{13}$, the accuracy in the measurement of the $CP$-violating phase is estimated to be $\ensuremath{\Delta}{\ensuremath{\delta}}_{CP}\ensuremath{\sim}3\ifmmode^\circ\else\textdegree\fi{}--5\ifmmode^\circ\else\textdegree\fi{}$, depending on the value of ${\ensuremath{\delta}}_{CP}$, the $CP$ coverage at $5\ensuremath{\sigma}$ is 85% and the mass hierarchy would be determined with better than $5\ensuremath{\sigma}$ level for all values of ${\ensuremath{\delta}}_{CP}$.

[1]  Matthias Wendt,et al.  PhD thesis , 2020 .

[2]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[3]  P. Hernández,et al.  Precision on leptonic mixing parameters at future neutrino oscillation experiments , 2012, 1203.5651.

[4]  L. Y. Wang,et al.  Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.

[5]  A. Gaponenko,et al.  Precision muon decay measurements and improved constraints on the weak interaction , 2011, 1112.3606.

[6]  J. C. Mitchell,et al.  Improved search for Muon-neutrino to electron-neutrino oscillations in MINOS. , 2011, Physical review letters.

[7]  Tejpreet Singh Golan,et al.  Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. , 2011, Physical review letters.

[8]  P. Huber,et al.  Optimization of the Neutrino Factory, revisited , 2010, 1012.1872.

[9]  Alain Blondel,et al.  COSTING METHODOLOGY AND STATUS OF THE NEUTRINO FACTORY , 2012 .

[10]  D. Meloni,et al.  The τ-contamination of the golden muon sample at the Neutrino Factory , 2010, 1005.2275.

[11]  A. Laing,et al.  Performance of the MIND detector at a Neutrino Factory using realistic muon reconstruction , 2010, 1004.0358.

[12]  N. Sinha,et al.  Effect of tau neutrino contribution to muon signals at neutrino factories , 2009, 0910.2020.

[13]  M. Campanelli,et al.  Physics at a future Neutrino Factory and super-beam facility , 2009 .

[14]  Kevin Paul,et al.  Accelerator design concept for future neutrino facilities , 2009 .

[15]  R. Hatcher,et al.  The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.

[16]  B. Blumenfeld,et al.  A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment , 2008, The European Physical Journal C.

[17]  J. Valle,et al.  Three-flavour neutrino oscillation update , 2008, 0808.2016.

[18]  et al,et al.  The magnetized steel and scintillator calorimeters of the MINOS experiment , 2008, 0805.3170.

[19]  A. Cervera-Villanueva MIND performance and prototyping , 2008 .

[20]  D. Petyt,et al.  Study of muon neutrino disappearance using the Fermilab Main Injector neutrino beam , 2007, 0711.0769.

[21]  D. Wright,et al.  An Overview of the Geant4 Toolkit , 2007 .

[22]  A. Cervera-Villanueva Review of Large Magnetic Calorimeters for a Neutrino Factory , 2005 .

[23]  A. Bross,et al.  Extruded plastic scintillator for MINERvA , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.

[24]  P. Harris,et al.  The MINOS calibration detector , 2005 .

[25]  D. Casper,et al.  Optimal $β$-beam at the CERN-SPS , 2005, hep-ph/0503021.

[26]  M. Campanelli,et al.  Energy reconstruction in quasi-elastic events unfolding physics and detector effects , 2004 .

[27]  J. Hernando,et al.  “RecPack” a reconstruction toolkit , 2004 .

[28]  P. Giusti,et al.  Analysis of the performance of the MONOLITH prototype , 2003 .

[29]  M. B. Gavela,et al.  Superbeams plus Neutrino Factory: the golden path to leptonic CP violation , 2002, hep-ph/0207080.

[30]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[31]  M. B. Gavela,et al.  On the measurement of leptonic CP violation , 2001, hep-ph/0103258.

[32]  F. Dydak,et al.  A large magnetic detector for the neutrino factory , 2000 .

[33]  M. B. Gavela,et al.  Golden measurements at a neutrino factory , 2000, hep-ph/0002108.

[34]  M. B. Gavela,et al.  Neutrino oscillation physics with a neutrino factory , 1998, hep-ph/9811390.

[35]  S. Geer Neutrino beams from muon storage rings: Characteristics and physics potential , 1997, hep-ph/9712290.

[36]  G. Ingelman,et al.  LEPTO 6.5 $-$ A Monte Carlo generator for deep inelastic lepton$-$nucleon scattering , 1996, hep-ph/9605286.

[37]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[38]  A. Dell'Acqua,et al.  Geant4—a simulation toolkit , 2003 .