Fine structure events in microwave emission during solar minimum
暂无分享,去创建一个
Wang Wei | Тань Чэнмин | Tan Cheng-ming | Тань Биолинь | Tan Bao-lin | Йан Йихуа | Y. Yihua | Ван Вэй | Чэнь Линьцзе | Cheng Linjie | Лю Фэй | Liu Fei | Доу Ицзян | Dou Yujiang
[1] G. Y. Smolkov,et al. The Siberian Solar Radio-Telescope: Parameters and principle of operation, objectives and results of first observations of spatio-temporal properties of development of active regions and flares , 1986 .
[2] Yoshihisa Irimajiri,et al. The Nobeyama radioheliograph , 1994 .
[3] H. Ji,et al. A broadband spectrometer for decimeter and microwave radio bursts , 1995 .
[4] Richard Grubb,et al. GOES x-ray sensor and its use in predicting solar-terrestrial disturbances , 1996, Optics & Photonics.
[5] Yu-ying Liu,et al. A radio spectrometer at 2.6-3.8 GHz , 2000 .
[6] K. L. Harvey,et al. A Picture of Solar Minimum and the Onset of Solar Cycle 23. I. Global Magnetic Field Evolution , 2000 .
[7] J. Brown,et al. Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) , 2003, SPIE Astronomical Telescopes + Instrumentation.
[8] K. Shibasaki,et al. Loop-Top Nonthermal Microwave Source in Extended Solar Flaring Loops , 2002 .
[9] S. V. Lesovoi,et al. The Siberian Solar Radio Telescope: the current state of the instrument, observations, and data , 2003 .
[10] Yihua Yan,et al. A New Solar Broadband Radio Spectrometer (SBRS) in China , 2004 .
[11] M. Karlický. Series of high-frequency slowly drifting structures mapping the flare magnetic field reconnection , 2004 .
[12] K. Shibasaki,et al. Spatially resolved microwave pulsations of a flare loop , 2005 .
[13] G. Chernov. Solar Radio Bursts with Drifting Stripes in Emission and Absorption , 2007 .
[14] V. Grechnev,et al. Microwave Type III-Like Bursts as Possible Signatures of Magnetic Reconnection , 2007 .
[15] Yihua Yan,et al. Statistical study of radio drifting pulsation structures with associated CMEs and other observations , 2008 .
[16] G. Fleishman,et al. A Broadband Microwave Burst Produced by Electron Beams , 2007, 0712.2584.
[17] G. Chernov. Fine Structure of Solar Radio Bursts , 2011 .
[18] B. Tan,et al. Micorwave observations of the Chinese Solar Broadband Radio Spectrometer at Huairou , 2012, Proceedings of the International Astronomical Union.
[19] W. Pesnell,et al. The Solar Dynamics Observatory (SDO) , 2012 .
[20] L. Dong,et al. Decimetric and metric digital solar radio spectrometers of the Yunnan Astronomical Observatories and the first-light results , 2014 .
[21] Long Xu,et al. Imaging and representation learning of solar radio spectrums for classification , 2016, Multimedia Tools and Applications.
[22] V. G. Zandanov,et al. Observations of Microwave Fine Structures by the Badary Broadband Microwave Spectropolarimeter and the Siberian Solar Radio Telescope , 2015 .
[23] Yihua Yan,et al. First radio burst imaging observation from Mingantu Ultrawide Spectral Radioheliograph , 2015, Proceedings of the International Astronomical Union.
[24] B. Tan,et al. STUDY OF CALIBRATION OF SOLAR RADIO SPECTROMETERS AND THE QUIET-SUN RADIO EMISSION , 2015, 1507.04866.
[25] D. Lingri,et al. Solar Activity Parameters and Associated Forbush Decreases During the Minimum Between Cycles 23 and 24 and the Ascending Phase of Cycle 24 , 2016 .
[26] T. Kaltman,et al. Quasi-periodic Pulsations in a Solar Microflare , 2018, The Astrophysical Journal.
[27] B. Tan. The characteristics of valley phase as predictor of the forthcoming solar cycle , 2018, Advances in Space Research.