Constructing dynamical systems having homoclinic bifurcation points of codimension two

A procedure is derived which allows for a systematic construction of three-dimensional ordinary differential equations having homoclinic solutions. The equations are proved to exhibit codimension-two homoclinic bifurcation points. Examples include the non-orientable resonant bifurcation, the inclination-flip, and the orbit-flip. In addition, an equation is constructed which has a homoclinic orbit converging to a saddle-focus satisfying Shilnikov's condition. The vector fields are polynomial and non-stiff in that the eigenvalues are of moderate size.

[1]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[2]  Alan R. Champneys,et al.  A non-transverse homoclinic orbit to a saddle-node equilibrium , 1996 .

[3]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[4]  S. Chow,et al.  Homoclinic bifurcation at resonant eigenvalues , 1990 .

[5]  Bo Deng CONSTRUCTING HOMOCLINIC ORBITS AND CHAOTIC ATTRACTORS , 1994 .

[6]  Björn Sandstede,et al.  A numerical toolbox for homoclinic bifurcation analysis , 1996 .

[7]  Björn Sandstede,et al.  Forced symmetry breaking of homoclinic cycles , 1995 .

[8]  L. A. Belyakov Bifurcation set in a system with homoclinic saddle curve , 1980 .

[9]  Hiroshi Kokubu,et al.  Bifurcations toN-homoclinic orbits andN-periodic orbits in vector fields , 1993 .

[10]  Yu. A. Kuznetsov,et al.  NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .

[11]  Mark J. Friedman,et al.  Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .

[12]  Freddy Dumortier,et al.  A degenerate singularity generating geometric Lorenz attractors , 1995, Ergodic Theory and Dynamical Systems.

[13]  Martin Krupa,et al.  The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit , 1994, Ergodic Theory and Dynamical Systems.

[14]  Alan R. Champneys,et al.  HomCont: An auto86 driver for homoclinic bifurcation analysis. Version 2.0 , 1995 .

[15]  Kenneth J. Palmer,et al.  Exponential dichotomies and transversal homoclinic points , 1984 .

[16]  Eiji Yanagida,et al.  Branching of double pulse solutions from single pulse solutions in nerve axon equations , 1987 .

[17]  Björn Sandstede,et al.  Convergence estimates for the numerical approximation of homoclinic solutions , 1997 .

[18]  D. Terman,et al.  The transition from bursting to continuous spiking in excitable membrane models , 1992 .