Modulated martensite: why it forms and why it deforms easily

Diffusionless phase transitions are at the core of the multifunctionality of (magnetic) shape memory alloys, ferroelectrics and multiferroics. Giant strain effects under external fields are obtained in low symmetric modulated martensitic phases. We outline the origin of modulated phases, their connection with tetragonal martensite and consequences owing to their functional properties by analysing the martensitic microstructure of epitaxial Ni–Mn–Ga films from the atomic to the macroscale. Geometrical constraints at an austenite–martensite phase boundary act down to the atomic scale. Hence, a martensitic microstructure of nanotwinned tetragonal martensite can form. Coarsening of twin variants can reduce twin boundary energy, a process we could observe from the atomic to the millimetre scale. Coarsening is a fractal process, proceeding in discrete steps by doubling twin periodicity. The collective defect energy results in a substantial hysteresis, which allows the retention of modulated martensite as a metastable phase at room temperature. In this metastable state, elastic energy is released by the formation of a 'twins within twins' microstructure that can be observed from the nanometre to the millimetre scale. This hierarchical twinning results in mesoscopic twin boundaries. Our analysis indicates that mesoscopic boundaries are broad and diffuse, in contrast to the common atomically sharp twin boundaries of tetragonal martensite. We suggest that the observed extraordinarily high mobility of such mesoscopic twin boundaries originates from their diffuse nature that renders pinning by atomistic point defects ineffective.

[1]  L. Landau The Intermediate State of Supraconductors , 1938, Nature.

[2]  J. Hirth,et al.  Steps, dislocations and disconnections as interface defects relating to structure and phase transformations , 1996 .

[3]  B. Noheda,et al.  Bridging phases at the morphotropic boundaries of lead oxide solid solutions , 2005, cond-mat/0511256.

[4]  Cao,et al.  Defect-induced heterogeneous transformations and thermal growth in athermal martensite. , 1990, Physical review. B, Condensed matter.

[5]  Sergio Conti,et al.  Branched microstructures: scaling and asymptotic self-similarity , 2000 .

[6]  A. Roytburd Elastic domains and polydomain phases in solids , 1993 .

[7]  Michael R. Thomas,et al.  In situ studies of the martensitic transformation in epitaxial Ni–Mn–Ga films , 2009 .

[8]  S. Andersson,et al.  Swinging twinning on the unit cell level as a structure-building operation in the solid state , 1974 .

[9]  K. Ullakko,et al.  Twin microstructure dependent mechanical response in Ni–Mn–Ga single crystals , 2010 .

[10]  V. Novák,et al.  In situ neutron diffraction study of magnetic field induced martensite reorientation in Ni–Mn–Ga under constant stress , 2008 .

[11]  M. Wuttig,et al.  Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width , 2006, Nature materials.

[12]  S. Fusil,et al.  Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. , 2007, Physical review letters.

[13]  E. Cesari,et al.  Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys , 2000 .

[14]  F. Passaretti,et al.  Crystal structure of 7M modulated Ni–Mn–Ga martensitic phase , 2008 .

[15]  Yong S. Chu,et al.  Identification of Quaternary Shape Memory Alloys with Near‐Zero Thermal Hysteresis and Unprecedented Functional Stability , 2010 .

[16]  Hartmut Jürgens,et al.  Fractals for the Classroom , 2012 .

[17]  W. B. Knowlton,et al.  Training, constraints, and high-cycle magneto-mechanical properties of Ni-Mn-Ga magnetic shape-memory alloys , 2008 .

[18]  A. Hubert,et al.  Zur Theorie der zweiphasigen Domänenstrukturen in Supraleitern und Ferromagneten , 1967, December 1, 1967.

[19]  Yukio Noda,et al.  Precursor Phenomena at Martensitic Phase Transition in Fe-Pd Alloy. I. Two-Tetragonal-Mixed Phase and Crest-Riding-Periodon , 1990 .

[20]  E. Hornbogen,et al.  Fractals in microstructure of metals , 1989 .

[21]  C. Tai,et al.  Influence of short-range and long-range order on the evolution of the morphotropic phase boundary in Pb Zr[sub 1−x]Ti[sub x] O₃ , 2004 .

[22]  A. A. Likhachev,et al.  Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase , 2002 .

[23]  Risto M. Nieminen,et al.  Magnetically driven shape memory alloys , 2004 .

[24]  M. Chmielus,et al.  Publisher's Note: “Large magnetic-field-induced strains in Ni–Mn–Ga nonmodulated martensite” [Appl. Phys. Lett. 95, 104103 (2009)] , 2009 .

[25]  M. Han,et al.  Twin boundary structure of the modulated variants in a Ni–Mn–Ga alloy , 2008 .

[26]  V. Martynov X-Ray Diffraction Study of Thermally and Stress-Induced Phase Transformations in Single Crystalline Ni-Mn-Ga Alloys , 1995 .

[27]  M. Gharghouri,et al.  Understanding modulated twin transition at the atomic level , 2007 .

[28]  D. Dunand,et al.  Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams. , 2009, Nature materials.

[29]  K. Ullakko,et al.  Structure and twinning stress of martensites in non-stoichiometric Ni2MnGa single crystal , 2003 .

[30]  H. Kungl,et al.  Nanodomain structure of Pb[Zr 1-x Ti x ]O 3 at its morphotropic phase boundary: Investigations from local to average structure , 2007 .

[31]  A. H. King,et al.  Deformation of Hierarchically Twinned Martensite , 2010 .

[32]  S. Hannula,et al.  Probing structure and microstructure of epitaxial Ni–Mn–Ga films by reciprocal space mapping and pole figure measurements , 2010 .

[33]  S. Hannula,et al.  Magnetic shape memory effect in thin foils , 2008 .

[34]  R. Kohn,et al.  Branching of twins near an austenite—twinned-martensite interface , 1992 .

[35]  V. Lindroos,et al.  Tensile/compressive behaviour of non-layered tetragonal Ni52.8Mn25.7Ga21.5 alloy , 2004 .

[36]  Shapiro,et al.  Adaptive phase formation in martensitic transformation. , 1991, Physical review. B, Condensed matter.

[37]  A. Laptev,et al.  Microstructure and atomic configuration of the (001)-oriented surface of epitaxial Ni–Mn–Ga thin films , 2011 .

[38]  I. Aaltio,et al.  Twin boundary nucleation and motion in Ni-Mn-Ga magnetic shape memory material with a low twinning stress , 2010 .

[39]  G. Aeppli,et al.  Phase Transitions at the Nanoscale in Functional Materials , 2009 .

[40]  M. Wuttig,et al.  Adaptive modulations of martensites. , 2009, Physical review letters.

[41]  Luciano Pietronero,et al.  FRACTALS IN PHYSICS , 1990 .

[42]  L. Schultz,et al.  Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown on MgO(001) , 2008 .

[43]  G. Kostorz,et al.  Microstructure of Magnetic Shape-Memory Alloys: Between Magnetoelasticity and Magnetoplasticity , 2008 .

[44]  Richard D. James,et al.  Magnetostriction of martensite , 1998 .

[45]  D. Viehland,et al.  Hierarchical domains in Na1/2Bi1/2TiO3 single crystals: Ferroelectric phase transformations within the geometrical restrictions of a ferroelastic inheritance , 2010 .

[46]  Giovanni Ferraris,et al.  Crystallography of Modular Materials , 2004 .

[47]  B. Mandelbrot SELF-AFFINE FRACTAL SETS, I: THE BASIC FRACTAL DIMENSIONS , 1986 .

[48]  V. Lindroos,et al.  Crystal structure and macrotwin interface of five-layered martensite in Ni–Mn–Ga magnetic shape memory alloy , 2006 .

[49]  M. Richter,et al.  Ab initio investigation of twin boundary motion in the magnetic shape memory Heusler alloy Ni2MnGa , 2008, Journal of Materials Science.

[50]  K. Bhattacharya,et al.  Ferroelectric perovskites for electromechanical actuation , 2003 .

[51]  O. Heczko,et al.  Magnetic Shape Memory Phenomena , 2009 .

[52]  V. Lindroos,et al.  Behaviour of Ni-Mn-Ga alloys under mechanical stress , 2003 .

[53]  R. Cerf,et al.  Fractals for the classroom. Strategic activities, vol 1, HO Peitgen, H Jürgens, D Saupe, E Maletsky, T Perciante, L Yunker. Springer, New York (1991) , 1992 .

[54]  Peter Entel,et al.  Modelling the phase diagram of magnetic shape memory Heusler alloys , 2006 .

[55]  H. Hänninen,et al.  Activation of magnetic shape memory effect in Ni–Mn–Ga alloys by mechanical and magnetic treatment , 2008 .

[56]  D. Viehland,et al.  Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. , 2003, Physical review letters.

[57]  J. Mackenzie,et al.  The crystallography of martensite transformations II , 1954 .

[58]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[59]  K. Ullakko,et al.  Temperature variation of structure and magnetic properties of Ni–Mn–Ga magnetic shape memory alloys , 2002 .

[60]  V. V. Kokorin,et al.  Large magnetic‐field‐induced strains in Ni2MnGa single crystals , 1996 .

[61]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .