Improved Duality Estimates and Applications to Reaction-Diffusion Equations

We present a refined duality estimate for parabolic equations. This estimate entails new results for systems of reaction-diffusion equations, including smoothness and exponential convergence towards equilibrium for equations with quadratic right-hand sides in two dimensions. For general systems in any space dimension, we obtain smooth solutions of reaction-diffusion systems coming out of reversible chemistry under an assumption that the diffusion coefficients are sufficiently close one to another.

[1]  Laurent Desvillettes,et al.  Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials , 2007, Asymptot. Anal..

[2]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[3]  L. Desvillettes Entropy Methods for Reaction-Diffusion Equations with Degenerate Diffusion Arising in Reversible Chemistry∗ , 2007 .

[4]  M. Pierre Weak solutions and supersolutions in $ L^1 $ for reaction-diffusion systems , 2003 .

[5]  L. Desvillettes,et al.  Entropy Methods for Reaction-Diffusion Equations : Degenerate Diffusion and Slowly Growing Apriori Bounds , 2006 .

[6]  Pavol Quittner,et al.  Superlinear Parabolic Problems , 2007, Birkhäuser Advanced Texts Basler Lehrbücher.

[7]  M. Caputo,et al.  Global Regularity of Solutions to Systems of Reaction–Diffusion with Sub-Quadratic Growth in Any Dimension , 2009, 0901.4359.

[8]  M. Pierre Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey , 2010 .

[9]  J. Morgan,et al.  On the Blow-up of Solutions to Some Semilinear and Quasilinear Reaction-Diffusion Systems , 1994 .

[10]  L. Desvillettes,et al.  Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion , 2009, 0906.5379.

[11]  L. Desvillettes,et al.  Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds , 2008 .

[12]  Annegret Glitzky,et al.  Free Energy and Dissipation Rate for Reaction Diffusion Processes of Electrically Charged Species , 1996 .

[13]  Laurent Desvillettes,et al.  Global Existence for Quadratic Systems of Reaction-Diffusion , 2007 .

[14]  Robert H. Martin,et al.  Global existence and boundedness in reaction-diffusion systems , 1987 .

[15]  T. Goudon,et al.  Regularity analysis for systems of reaction-diffusion equations , 2010 .

[16]  Herbert Amann,et al.  Global existence for semilinear parabolic systems. , 1985 .

[17]  L. Desvillettes,et al.  Absence of gelation for models of coagulation-fragmentation with degenerate diffusion , 2010 .

[18]  L. Desvillettes,et al.  Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations , 2006 .

[19]  D. Schmitt,et al.  Blowup in reaction-diffusion systems with dissipation of mass , 1997 .

[20]  D. Lamberton,et al.  Equations d'évolution linéaires associées à des semi-groupes de contractions dans les espaces LP , 1987 .

[21]  Giuseppe Toscani,et al.  On the Trend to Equilibrium for Some Dissipative Systems with Slowly Increasing a Priori Bounds , 2000 .

[22]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .