Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation

[1]  H. Girault,et al.  Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception , 2018 .

[2]  Yao Zhou,et al.  Novel Sulfur Host Composed of Cobalt and Porous Graphitic Carbon Derived from MOFs for the High-Performance Li-S Battery. , 2018, ACS applied materials & interfaces.

[3]  Ya‐Xia Yin,et al.  A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. , 2018, Angewandte Chemie.

[4]  Hong‐Jie Peng,et al.  Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes , 2018 .

[5]  O. Borodin,et al.  Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure. , 2017, Accounts of chemical research.

[6]  P. Balbuena,et al.  First-Principles Investigation of Lithium Polysulfide Structure and Behavior in Solution , 2017 .

[7]  Kun Fu,et al.  Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries , 2017 .

[8]  Tingzheng Hou,et al.  Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode , 2017 .

[9]  Yi Cui,et al.  Theoretical Investigation of 2D Layered Materials as Protective Films for Lithium and Sodium Metal Anodes , 2017 .

[10]  Ashleigh M. Schwarz,et al.  In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries , 2017 .

[11]  Jun Liu,et al.  Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions , 2017 .

[12]  Yizhou Zhu,et al.  Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode , 2017, Advanced science.

[13]  Yayuan Liu,et al.  An Artificial Solid Electrolyte Interphase with High Li‐Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes , 2017, Advanced materials.

[14]  Xin-Bing Cheng,et al.  Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries , 2017 .

[15]  P. Balbuena,et al.  Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces , 2017 .

[16]  Yu-Ting Weng,et al.  A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li-S batteries. , 2017, Chemical communications.

[17]  Jiaqi Huang,et al.  The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection , 2017 .

[18]  Feng Wu,et al.  Theoretical Studies of the Reduction of Cyclic Esters on the Anode Interface of Lithium Batteries , 2017 .

[19]  Bin Zhu,et al.  Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High‐Performance Lithium‐Metal Battery Anodes , 2017, Advanced materials.

[20]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[21]  J. Goodenough,et al.  Cellulose-Based Porous Membrane for Suppressing Li Dendrite Formation in Lithium–Sulfur Battery , 2016 .

[22]  Shaojun Guo,et al.  Rational Design of Si/SiO2@Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High‐Performance Li–S Battery , 2016, Advanced materials.

[23]  Fernando A. Soto,et al.  Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces , 2016, 1605.07142.

[24]  Yu-Guo Guo,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[25]  Peng Lu,et al.  Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth , 2016 .

[26]  Fernando A. Soto,et al.  Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries , 2015 .

[27]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[28]  P. Balbuena,et al.  Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries , 2015 .

[29]  Petr Novák,et al.  Progress Towards Commercially Viable Li–S Battery Cells , 2015 .

[30]  Qiang Zhang,et al.  Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries , 2015 .

[31]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[32]  O. Borodin,et al.  Effect of organic solvents on Li+ ion solvation and transport in ionic liquid electrolytes: a molecular dynamics simulation study. , 2015, The journal of physical chemistry. B.

[33]  Kevin Leung,et al.  Predicting the voltage dependence of interfacial electrochemical processes at lithium-intercalated graphite edge planes. , 2015, Physical chemistry chemical physics : PCCP.

[34]  Shaogang Wang,et al.  Rapid communicationA graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries , 2015 .

[35]  Daniel M. Seo,et al.  Combined quantum chemical/Raman spectroscopic analyses of Li + cation solvation: Cyclic carbonate solvents-Ethylene carbonate and propylene carbonate , 2014 .

[36]  P. Balbuena,et al.  Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries , 2014 .

[37]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[38]  Michael J. Hoffmann,et al.  Studies on preventing Li dendrite formation in Li–S batteries by using pre-lithiated Si microwire anodes , 2014 .

[39]  Ilke Arslan,et al.  Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. , 2014, Chemical communications.

[40]  Mengyun Nie,et al.  Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries , 2014 .

[41]  C. Tenney,et al.  Towards First Principles prediction of Voltage Dependences of Electrolyte/Electrolyte Interfacial Processes in Lithium Ion Batteries , 2013, 1312.2945.

[42]  K. Leung Two-electron reduction of ethylene carbonate: A quantum chemistry re-examination of mechanisms , 2013, 1307.3165.

[43]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[44]  Yang Shao-Horn,et al.  Thermal Stability of Li2O2 and Li2O for Li-Air Batteries: In Situ XRD and XPS Studies , 2013 .

[45]  Kang Xu,et al.  Li^+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells , 2012 .

[46]  Jie Gao,et al.  Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies , 2011 .

[47]  A. Cresce,et al.  Preferential Solvation of Li+ Directs Formation of Interphase on Graphitic Anode , 2011 .

[48]  Peng Lu,et al.  Lithium transport within the solid electrolyte interphase , 2011 .

[49]  Martin Winter,et al.  The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries , 2009 .

[50]  T. Jow,et al.  Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/ electrolyte interface chemistry , 2007 .

[51]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[52]  H. Ota,et al.  Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes. II. Surface chemistry , 2004 .

[53]  Shinichiro Nakamura,et al.  Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive? , 2002, Journal of the American Chemical Society.

[54]  G. Taillades,et al.  The structure of ionically conductive chalcogenide glasses: a combined NMR, XPS and ab initio calculation study , 2001 .

[55]  Satoru Tanaka,et al.  XPS and UPS studies on electronic structure of Li2O , 2000 .

[56]  D. Aurbach,et al.  X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy , 1996 .

[57]  Hiroshi Tamura,et al.  XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF4 , 1995 .