The rate-limiting step in the thermal oxidation of silicon carbide

Using first-principles density-functional calculations of the total energy, we performed a systematic study of the diffusion activation energies of O 2 and CO in SiO 2 and Si 1− x C x O 2 . Our results suggest that the dense Si 1− x C x O 2 (e.g., Si 2 CO 6 ) layer may play a critical role in the SiC thermal oxidation process. The out-diffusion of CO through SiO 2 or Si 2 CO 6 is the controlling step of the SiC thermal oxidation. Known experimental data are explained well by our results.

[1]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[2]  S T Pantelides,et al.  Reactions and diffusion of water and oxygen molecules in amorphous SiO2. , 2002, Physical review letters.

[3]  Price,et al.  Ab initio molecular dynamics with variable cell shape: Application to MgSiO3. , 1993, Physical review letters.

[4]  V. Chelnokov,et al.  High temperature electronics using SiC: actual situation and unsolved problems , 1997 .

[5]  R. E. Tressler,et al.  Oxidation Kinetics of Silicon Carbide Crystals and Ceramics: I, In Dry Oxygen , 1986 .

[6]  Y. Hoshino,et al.  Atomic scale characterization of oxidized 6H–SiC(112̄0) surfaces , 2003 .

[7]  Güttler,et al.  Detection of Interstitial Oxygen Molecules in SiO2 Glass by a Direct Photoexcitation of the Infrared Luminescence of Singlet O2. , 1996, Physical review letters.

[8]  Q. Zeng,et al.  Theoretical Investigation for the Active-to-Passive Transition in the Oxidation of Silicon Carbide , 2008 .

[9]  N. Govind,et al.  A generalized synchronous transit method for transition state location , 2003 .

[10]  A. Catellani,et al.  Modifications of cubic SiC surfaces studied by ab initio simulations: from gas adsorption to organic functionalization , 2007 .

[11]  Leonard C. Feldman,et al.  Modified Deal Grove model for the thermal oxidation of silicon carbide , 2004 .

[12]  I. Pereyra,et al.  Crystalline silicon oxycarbide: Is there a native oxide for silicon carbide? , 2004 .

[13]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[14]  Q. Zeng,et al.  Adsorption of atomic and molecular oxygen on 3C-SiC(111) and ( 1 ¯ 1 ¯ 1 ¯ ) surfaces: A first-principles study , 2009 .

[15]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[16]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[17]  Thomas Frauenheim,et al.  Theoretical study of the mechanism of dry oxidation of 4H-SiC , 2005 .

[18]  Y. Vorobiev,et al.  Oxygen diffusion in silicon oxide films produced by different methods , 2000 .

[19]  H. Matsunami,et al.  A cause for highly improved channel mobility of 4H-SiC metal–oxide–semiconductor field-effect transistors on the (112̄0) face , 2001 .

[20]  P. Hyldgaard,et al.  First stages of oxidation of the Si-rich 3C-SiC(001) surface , 2005 .

[21]  Takanobu Watanabe,et al.  New linear-parabolic rate equation for thermal oxidation of silicon. , 2006, Physical review letters.

[22]  R. E. Tressler,et al.  Oxidation of Single‐Crystal Silicon Carbide Part I . Experimental Studies , 1990 .

[23]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[24]  Q. Zeng,et al.  First-principles investigation on initial stage of 2H-SiC(001) surface oxidation , 2009 .

[25]  C. Radtke,et al.  Limiting step involved in the thermal growth of silicon oxide films on silicon carbide. , 2002, Physical review letters.