The Dynamic Behaviour of Non-Homogeneous Single-Unireducible Markov and Semi-Markov Chains

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  H. Cohn PRODUCTS OF STOCHASTIC MATRICES AND APPLICATIONS , 1989 .

[3]  Nikolaos Limnios,et al.  Semi-Markov Processes , 2001 .

[4]  I. Sonin The asymptotic behaviour of a general finite nonhomogeneous Markov chain (the decomposition-separation theorem) , 1996 .

[5]  Dean Isaacson,et al.  Strongly Ergodic Behavior for Non-Stationary Markov Processes , 1973 .

[6]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[7]  Jacques Janssen,et al.  Homogeneous semi-Markov reliability models for credit risk management* , 2006 .

[8]  Raimondo Manca,et al.  A computational procedure for the asymptotic analysis of homogeneous semi-Markov processes , 1984 .

[9]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[10]  Jacques Janssen,et al.  Discrete Time Non-Homogeneous Semi-Markov Reliability Transition Credit Risk Models and the Default Distribution Functions , 2011 .

[11]  Erhan Çinlar,et al.  Introduction to stochastic processes , 1974 .

[12]  Dean Isaacson,et al.  Markov Chains: Theory and Applications , 1976 .

[13]  H. Cohn Finite non-homogeneous Markov chains: Asymptotic behaviour , 1976, Advances in Applied Probability.

[14]  A. Paz,et al.  Ergodic Theorems for Infinite Probabilistic Tables , 1970 .

[15]  E. Kay,et al.  Graph Theory. An Algorithmic Approach , 1975 .

[16]  Jacques Janssen,et al.  Applied Semi-Markov Processes , 2005 .

[17]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .