Evolutionary computation and multimodal search: A good combination to tackle molecular diversity in the field of peptide design

SummaryThe awesome degree of structural diversity accessible in peptide design has created a demand for computational resources that can evaluate a multitude of candidate structures. In our specific case, we translate the peptide design problem to an optimization problem, and use evolutionary computation (EC) in tandem with docking to carry out a combinatorial search. However, the use of EC in huge search spaces with different optima may pose certain drawbacks. For example, EC is prone to focus a search in the first good region found. This is a problem not only because of the undesirable and automatic rejection of potentially good search space regions, but also because the found solution may be extremely difficult to synthesize chemically or may even be a false docking positive. In order to avoid rejecting potentially good solutions and to maximize the molecular diversity of the search, we have implemented evolutionary multimodal search techniques, as well as the molecular diversity metric needed by the multimodal algorithms to measure differences between various regions of the search space.

[1]  E. Giralt,et al.  Old and New Strategies for the Discovery of Antibacterial Agents , 2005 .

[2]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[3]  L. Hall,et al.  QSAR Modeling Based on Structure-Information for Properties of Interest in Human Health , 2005, SAR and QSAR in environmental research.

[4]  David Corne,et al.  Evolutionary Computation In Bioinformatics , 2003 .

[5]  David E. Goldberg,et al.  Probabilistic Crowding: Deterministic Crowding with Probabilistic Replacement , 1999 .

[6]  R. Pioli,et al.  Higher serum prolyl endopeptidase activity in patients with post-traumatic stress disorder. , 1999, Journal of affective disorders.

[7]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[10]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[11]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[12]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .

[13]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[14]  D. Mould,et al.  Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. , 1991, Analytical biochemistry.

[15]  Dominique Douguet,et al.  A genetic algorithm for the automated generation of small organic molecules: Drug design using an evolutionary algorithm , 2000, J. Comput. Aided Mol. Des..

[16]  J. Irwin,et al.  Lead discovery using molecular docking. , 2002, Current opinion in chemical biology.

[17]  Petra Schneider,et al.  De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks , 2000, J. Comput. Aided Mol. Des..

[18]  Luhua Lai,et al.  LigBuilder: A Multi-Purpose Program for Structure-Based Drug Design , 2000 .

[19]  Andreas Schwienhorst,et al.  Genetic algorithm for the design of molecules with desired properties , 2002, J. Comput. Aided Mol. Des..

[20]  Yasuhiro Tsujimura,et al.  Entropy-based genetic algorithm for solving TSP , 1998, 1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111).

[21]  Andreas Zell,et al.  A Clustering Based Niching EA for Multimodal Search Spaces , 2003, Artificial Evolution.

[22]  David E. Goldberg,et al.  The Design of Innovation , 2002, Genetic Algorithms and Evolutionary Computation.

[23]  David J Newman,et al.  Natural products as sources of new drugs over the period 1981-2002. , 2003, Journal of natural products.

[24]  R. Mentlein,et al.  Proline residues in the maturation and degradation of peptide hormones and neuropeptides , 1988, FEBS letters.

[25]  David E. Goldberg,et al.  Genetic Algorithms, Tournament Selection, and the Effects of Noise , 1995, Complex Syst..

[26]  Nicolas Majeux,et al.  Structure‐based ligand design by a build‐up approach and genetic algorithm search in conformational space , 2001, J. Comput. Chem..

[27]  James A. Foster,et al.  Evolving Molecules for Drug Design Using Genetic Algorithms via Molecular Trees , 2000, GECCO.

[28]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[29]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[30]  Xavier Llorà,et al.  Computer-Aided Peptide Evolution for Virtual Drug Design , 2004, GECCO.

[31]  T. Yoshimoto,et al.  Post-proline cleaving enzyme and post-proline dipeptidyl aminopeptidase. Comparison of two peptidases with high specificity for proline residues. , 1978, The Journal of biological chemistry.

[32]  Xavier Llorà,et al.  Development of a Genetic Algorithm to Design and Identify Peptides that can Cross the Blood-Brain Barrier , 2003 .

[33]  László Polgár,et al.  Prolyl Oligopeptidase An Unusual β-Propeller Domain Regulates Proteolysis , 1998, Cell.

[34]  Patrick Aloy,et al.  Target selection for complex structural genomics. , 2006, Current opinion in structural biology.

[35]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[36]  G. Vanhoof,et al.  Distribution of Prolyl Oligopeptidase in Human Peripheral Tissues and Body Fluids , 1996, European journal of clinical chemistry and clinical biochemistry : journal of the Forum of European Clinical Chemistry Societies.

[37]  Julian F. Miller,et al.  Genetic and Evolutionary Computation Conference 2008 : GECCO 2008 , 2008, GECCO 2008.

[38]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[39]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[40]  Shail Patel,et al.  Patenting evolved batericidal peptides , 2001 .

[41]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[42]  S. Vajda,et al.  Protein-protein docking: is the glass half-full or half-empty? , 2004, Trends in biotechnology.

[43]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[44]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[45]  J. Calabrese,et al.  Alterations in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: effects of antidepressants, mood stabilizers, and antipsychotic drugs , 1995, Psychiatry Research.

[46]  David Beasley,et al.  An overview of genetic algorithms: Part 1 , 1993 .

[47]  Fumiyoshi Yamashita,et al.  Quantitative structure/property relationship analysis of Caco-2 permeability using a genetic algorithm-based partial least squares method. , 2002, Journal of pharmaceutical sciences.

[48]  Xavier Llorà,et al.  ENPDA: an evolutionary structure-based de novo peptide design algorithm , 2005, J. Comput. Aided Mol. Des..

[49]  C. Leblanc,et al.  Combinatorial chemistry as a tool for drug discovery. , 1999, Progress in medicinal chemistry.

[50]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[51]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[52]  Xavier Llorà,et al.  Evolutionary algorithms and de novo peptide design , 2006, Soft Comput..