Endogenous Xylose Pathway in Saccharomyces cerevisiae

ABSTRACT The baker's yeast Saccharomyces cerevisiae is generally classified as a non-xylose-utilizing organism. We found that S. cerevisiae can grow on d-xylose when only the endogenous genes GRE3 (YHR104w), coding for a nonspecific aldose reductase, and XYL2 (YLR070c, ScXYL2), coding for a xylitol dehydrogenase (XDH), are overexpressed under endogenous promoters. In nontransformed S. cerevisiae strains, XDH activity was significantly higher in the presence of xylose, but xylose reductase (XR) activity was not affected by the choice of carbon source. The expression of SOR1, encoding a sorbitol dehydrogenase, was elevated in the presence of xylose as were the genes encoding transketolase and transaldolase. An S. cerevisiae strain carrying the XR and XDH enzymes from the xylose-utilizing yeast Pichia stipitis grew more quickly and accumulated less xylitol than did the strain overexpressing the endogenous enzymes. Overexpression of the GRE3 and ScXYL2 genes in the S. cerevisiae CEN.PK2 strain resulted in a growth rate of 0.01 g of cell dry mass liter−1 h−1 and a xylitol yield of 55% when xylose was the main carbon source.

[1]  B. Prior,et al.  Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae , 1995, Applied and environmental microbiology.

[2]  T. Jeffries,et al.  Levels of pentose phosphate pathway enzymes fromCandida shehatae grown in continuous culture , 1988, Applied Microbiology and Biotechnology.

[3]  B. Prior,et al.  D-xylose utilization by Saccharomyces cerevisiae. , 1989, Journal of general microbiology.

[4]  R. W. Detroy,et al.  Induction of NADPH‐linked D‐xylose reductase and NAD‐linked xylitol dehydrogenase activities in Pachysolen tannophilus by D‐xylose, L‐arabinose, or D‐galactose , 1985, Biotechnology and bioengineering.

[5]  Toshiomi Yoshida,et al.  Construction of xylose-assimilating Saccharomyces cerevisiae , 1993 .

[6]  M Penttilä,et al.  Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. , 2001, Metabolic engineering.

[7]  M. Ashburner A Laboratory manual , 1989 .

[8]  N. Ho,et al.  Genetically Engineered SaccharomycesYeast Capable of Effective Cofermentation of Glucose and Xylose , 1998, Applied and Environmental Microbiology.

[9]  M. Penttilä,et al.  Xylitol Production by Recombinant Saccharomyces Cerevisiae , 1991, Bio/Technology.

[10]  J. Hartley,et al.  Nucleotide sequence of the yeast plasmid , 1980, Nature.

[11]  B. Hahn-Hägerdal,et al.  Xylulokinase Overexpression in Two Strains ofSaccharomyces cerevisiae Also Expressing Xylose Reductase and Xylitol Dehydrogenase and Its Effect on Fermentation of Xylose and Lignocellulosic Hydrolysate , 2001, Applied and Environmental Microbiology.

[12]  Hinrich W. H. Göhlmann,et al.  Cloning of a second gene encoding 6‐phosphofructo‐2‐kinase in yeast, and characterization of mutant strains without fructose‐2,6‐bisphosphate , 1996, Molecular microbiology.

[13]  M. Penttilä,et al.  Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase , 1999, FEBS letters.

[14]  F. Zimmermann,et al.  The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. , 1993, European journal of biochemistry.

[15]  M. Penttilä,et al.  The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. , 2000, FEMS microbiology letters.

[16]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[17]  C. Gong,et al.  D-xylulose fermentation in yeasts , 1981, Biotechnology Letters.

[18]  B. Hahn-Hägerdal,et al.  Putative xylose and arabinose reductases in Saccharomyces cerevisiae , 2002, Yeast.

[19]  R. D. Gietz,et al.  New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. , 1988, Gene.

[20]  Yong-Su Jin,et al.  Optimal Growth and Ethanol Production from Xylose by Recombinant Saccharomyces cerevisiae Require Moderate d-Xylulokinase Activity , 2003, Applied and Environmental Microbiology.

[21]  A. Sarthy,et al.  Cloning and sequence determination of the gene encoding sorbitol dehydrogenase from Saccharomyces cerevisiae. , 1994, Gene.

[22]  P. M. Bruinenberg,et al.  NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts , 1984, Applied Microbiology and Biotechnology.

[23]  B. Prior,et al.  Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae , 1993, Applied and environmental microbiology.

[24]  D. Haltrich,et al.  Induction of aldose reductase and xylitol dehydrogenase activities in Candida tenuis CBS 4435. , 1997, FEMS microbiology letters.

[25]  W. V. van Zyl,et al.  Deletion of the GRE3 Aldose Reductase Gene and Its Influence on Xylose Metabolism in Recombinant Strains of Saccharomyces cerevisiae Expressing thexylA and XKS1 Genes , 2001, Applied and Environmental Microbiology.

[26]  George T. Tsao,et al.  Production of Ethanol from d-Xylose by Using d-Xylose Isomerase and Yeasts , 1981, Applied and environmental microbiology.

[27]  M. Penttilä,et al.  Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase , 1995, Applied and environmental microbiology.

[28]  J. Heyman,et al.  The Transcriptional Response of Yeast to Saline Stress* , 2000, The Journal of Biological Chemistry.

[29]  Rodney Rothstein,et al.  Elevated recombination rates in transcriptionally active DNA , 1989, Cell.

[30]  A. Kingsman,et al.  Factors affecting heterologous gene expression in Saccharomyces cerevisiae. , 1985, Gene.

[31]  M. Olson,et al.  Physical maps of the six smallest chromosomes of Saccharomyces cerevisiae at a resolution of 2.6 kilobase pairs. , 1993, Genetics.

[32]  A J Sinskey,et al.  Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae , 1986, Biotechnology and bioengineering.

[33]  M. Young,et al.  Functional genomic studies of aldo-keto reductases. , 2001, Chemico-biological interactions.

[34]  E. Ellis,et al.  Characterization of Ypr1p from Saccharomyces cerevisiae as a 2‐methylbutyraldehyde reductase , 2002, Yeast.

[35]  Gerald R. Fink,et al.  Methods in Yeast Genetics: Laboratory Manual , 1981 .

[36]  A. Covarrubias,et al.  Three genes whose expression is induced by stress in Saccharomyces cerevisiae , 1999, Yeast.

[37]  P. Kötter,et al.  Xylose fermentation by Saccharomyces cerevisiae , 1993, Applied Microbiology and Biotechnology.

[38]  H. Ronne,et al.  Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. , 1993, The EMBO journal.

[39]  B. Hahn-Hägerdal,et al.  Anaerobic Xylose Fermentation by Recombinant Saccharomyces cerevisiae Carrying XYL1, XYL2, andXKS1 in Mineral Medium Chemostat Cultures , 2000, Applied and Environmental Microbiology.

[40]  N. Ho,et al.  Cloning of yeast xylulokinase gene by complementation of E. coli and yeast mutations , 1989 .

[41]  G. Fink,et al.  Methods in yeast genetics , 1979 .

[42]  L. Olsson,et al.  A rapid chromatographic method for the production of preparative amounts of xylulose , 1994 .

[43]  R. Schiestl,et al.  Improved method for high efficiency transformation of intact yeast cells. , 1992, Nucleic acids research.

[44]  A. Kingsman,et al.  Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. , 1983, Gene.

[45]  C. A. Thomas,et al.  Molecular cloning. , 1977, Advances in pathobiology.

[46]  J. Thevelein,et al.  The Transcriptional Response of Saccharomyces cerevisiae to Osmotic Shock , 2000, The Journal of Biological Chemistry.

[47]  J. Aguilera,et al.  The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions , 2001, Current Genetics.