Revisiting the doping requirement for low power junctionless MOSFETs

In this work, we revisit the requirement of higher channel doping (≥1019 cm−3) in junctionless (JL) double gate MOSFETs. It is demonstrated that moderately doped (1018 cm−3) ultra low power (ULP) JL transistors perform significantly better than heavily doped (1019 cm−3) devices. JL MOSFETs with moderate doping results in the spreading out of carriers across the entire silicon film instead of being localized at the center of the film. This improves gate controllability leading to higher on–off current ratio and lower intrinsic delay for ULP subthreshold logic applications. Additional benefits of using a channel doping concentration of 1018 cm−3 instead of conventional heavily doped design is the significant reduction in threshold voltage sensitivity values (by ~70–90%) with respect to film thickness and gate oxide thickness. Further improvement in ULP performance metrics can be achieved by limiting the source/drain implantation away from the gate edge. This design, specifically for ULP, allows the requirement of gate workfunction to be reduced from p+-poly (~ 5.1 eV) to near about midgap values (~ 4.8 eV). On–off current ratio and intrinsic delay for optimized JL devices are compared for low standby power projections of the technological roadmap. A 6T-SRAM cell operating at 0.8 V with 25 nm JL devices exhibits a static noise margin of 151 mV with gate workfunction offset of 0.2 eV with respect to midgap value (4.72 eV). The results highlight new viewpoints for realizing improved low power JL transistors.

[1]  O. Faynot,et al.  Scaling of Trigate Junctionless Nanowire MOSFET With Gate Length Down to 13 nm , 2012, IEEE Electron Device Letters.

[2]  C.R. Cleavelin,et al.  Quantum-mechanical effects in trigate SOI MOSFETs , 2006, IEEE Transactions on Electron Devices.

[3]  Chi-Woo Lee,et al.  Reduced electric field in junctionless transistors , 2010 .

[4]  Chi-Woo Lee,et al.  High-Temperature Performance of Silicon Junctionless MOSFETs , 2010, IEEE Transactions on Electron Devices.

[5]  Jean-Pierre Colinge,et al.  Performance estimation of junctionless multigate transistors , 2010 .

[6]  W. Haensch,et al.  Demonstration of highly scaled FinFET SRAM cells with high-κ/metal gate and investigation of characteristic variability for the 32 nm node and beyond , 2008, 2008 IEEE International Electron Devices Meeting.

[7]  A new fabrication method for elevated source/drain junctionless transistors , 2013 .

[8]  A. V. Nazarov,et al.  Mobility enhancement effect in heavily doped junctionless nanowire silicon-on-insulator metal-oxide-semiconductor field-effect transistors , 2012 .

[9]  M. Vinet,et al.  Bonded planar double-metal-gate NMOS transistors down to 10 nm , 2005, IEEE Electron Device Letters.

[10]  M. Armstrong,et al.  Comparison of Junctionless and Conventional Trigate Transistors With $L_{g}$ Down to 26 nm , 2011, IEEE Electron Device Letters.

[11]  Chi On Chui,et al.  CMOS Junctionless Field-Effect Transistors Manufacturing Cost Evaluation , 2013, IEEE Transactions on Semiconductor Manufacturing.

[12]  J. H. Chen,et al.  High performance 22/20nm FinFET CMOS devices with advanced high-K/metal gate scheme , 2010, 2010 International Electron Devices Meeting.

[13]  Jin Soo Kim,et al.  First Demonstration of Junctionless Accumulation-Mode Bulk FinFETs With Robust Junction Isolation , 2013, IEEE Electron Device Letters.

[14]  Abhinav Kranti,et al.  Single transistor latch phenomenon in junctionless transistors , 2013 .

[15]  Chun-Yen Chang,et al.  Device and Circuit Performance Estimation of Junctionless Bulk FinFETs , 2013, IEEE Transactions on Electron Devices.

[16]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[17]  In Man Kang,et al.  RF Performance and Small-Signal Parameter Extraction of Junctionless Silicon Nanowire MOSFETs , 2011, IEEE Transactions on Electron Devices.

[18]  Wei Wang,et al.  On–Off Charge–Voltage Characteristics and Dopant Number Fluctuation Effects in Junctionless Double-Gate MOSFETs , 2012, IEEE Transactions on Electron Devices.

[19]  Mobility improvement in nanowire junctionless transistors by uniaxial strain , 2010 .

[20]  Jean-Pierre Colinge,et al.  Mobility and screening effect in heavily doped accumulation-mode metal-oxide-semiconductor field-effect transistors , 2012 .

[21]  Sung-Jin Choi,et al.  Sensitivity of Threshold Voltage to Nanowire Width Variation in Junctionless Transistors , 2011, IEEE Electron Device Letters.

[22]  A. Hikavyy,et al.  Low-voltage 6T FinFET SRAM cell with high SNM using HfSiON/TiN gate stack, fin widths down to 10nm and 30nm gate length , 2008, 2008 IEEE International Conference on Integrated Circuit Design and Technology and Tutorial.

[23]  Abhinav Kranti,et al.  Investigation of high-performance sub-50 nm junctionless nanowire transistors , 2011, Microelectron. Reliab..

[24]  Abhinav Kranti,et al.  Junctionless 6T SRAM cell , 2010 .

[25]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[26]  Xing Zhou,et al.  Analytical models for the electric potential, threshold voltage and drain current of long-channel junctionless double-gate transistors , 2013 .

[27]  G. A. Armstrong,et al.  Bipolar effects in unipolar junctionless transistors , 2012 .

[28]  Ran Yan,et al.  Junctionless Multiple-Gate Transistors for Analog Applications , 2011, IEEE Transactions on Electron Devices.

[29]  Impact ionization induced dynamic floating body effect in junctionless transistors , 2013 .

[30]  Chun-Yen Chang,et al.  Performance Comparison Between Bulk and SOI Junctionless Transistors , 2013, IEEE Electron Device Letters.

[31]  M. de Souza,et al.  Cryogenic Operation of Junctionless Nanowire Transistors , 2011, IEEE Electron Device Letters.

[32]  Chi-Woo Lee,et al.  Low subthreshold slope in junctionless multigate transistors , 2010 .

[33]  G. A. Armstrong,et al.  Design and Optimization of FinFETs for Ultra-Low-Voltage Analog Applications , 2007, IEEE Transactions on Electron Devices.

[34]  P. Gupta,et al.  Evaluation of Digital Circuit-Level Variability in Inversion-Mode and Junctionless FinFET Technologies , 2013, IEEE Transactions on Electron Devices.

[35]  Marcelo Antonio Pavanello,et al.  The zero temperature coefficient in junctionless nanowire transistors , 2012 .

[36]  Abhinav Kranti,et al.  Ultra Low Power Junctionless MOSFETs for Subthreshold Logic Applications , 2013, IEEE Transactions on Electron Devices.

[37]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[38]  G. Pourtois,et al.  Quantum simulations of electrostatics in Si cylindrical nanowire pinch-off nFETs and pFETs with a homogeneous channel including strain and arbitrary crystallographic orientations , 2011, Ulis 2011 Ultimate Integration on Silicon.

[39]  Jae-Hyuk Ahn,et al.  Accumulation mode field-effect transistors for improved sensitivity in nanowire-based biosensors , 2012 .

[40]  Rong Zhang,et al.  Field-effect transistors based on two-dimensional materials for logic applications , 2013 .

[41]  S. Ganguly,et al.  Enhanced Electrostatic Integrity of Short-Channel Junctionless Transistor With High- $\kappa$ Spacers , 2011, IEEE Electron Device Letters.

[42]  S. Barraud,et al.  Electron mobility in heavily doped junctionless nanowire SOI MOSFETs , 2013 .

[43]  G. A. Armstrong,et al.  High-Performance Junctionless MOSFETs for Ultralow-Power Analog/RF Applications , 2012, IEEE Electron Device Letters.

[44]  R. Rooyackers,et al.  First observation of FinFET specific mismatch behavior and optimization guidelines for SRAM scaling , 2008, 2008 IEEE International Electron Devices Meeting.

[45]  G. Alastair Armstrong,et al.  Parameter sensitivity for optimal design of 65 nm node double gate SOI transistors , 2005 .

[46]  Massimo Vanzi,et al.  A physically based mobility model for numerical simulation of nonplanar devices , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[47]  Adrian M. Ionescu,et al.  Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor , 2013 .

[48]  Temperature-dependent characteristics of junctionless bulk transistor , 2013 .

[49]  A. Kranti,et al.  Junctionless nanowire transistor (JNT): Properties and design guidelines , 2010, 2010 Proceedings of the European Solid State Device Research Conference.

[50]  Sung-Jin Choi,et al.  A Compact Model of Quantum Electron Density at the Subthreshold Region for Double-Gate Junctionless Transistors , 2012, IEEE Transactions on Electron Devices.