Increased surface flashover voltage in microfabricated devices

With the demand for improved performance in microfabricated devices, the necessity to apply greater electric fields and voltages becomes evident. When operating in vacuum, the voltage is typically limited by surface flashover forming along the surface of a dielectric. By modifying the fabrication process, we have discovered it is possible to more than double the flashover voltage. Our finding has significant impact on the realization of next-generation micro- and nano-fabricated devices and for the fabrication of on-chip ion trap arrays for the realization of scalable ion quantum technology.

[1]  Winfried K. Hensinger,et al.  Microfabricated ion traps , 2011, 1101.3207.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[4]  Andrew G. Glen,et al.  APPL , 2001 .

[5]  Herbert Walther,et al.  Continuous generation of single photons with controlled waveform in an ion-trap cavity system , 2004, Nature.

[6]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[7]  R. Hackam,et al.  Surface flashover of solid insulators in atmospheric air and in vacuum , 1985 .

[8]  J. P. Brainard,et al.  Mechanism of pulsed surface flashover involving electron‐stimulated desorption , 1980 .

[9]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[10]  Scott A. Diddams,et al.  Recent atomic clock comparisons at NIST , 2008 .

[11]  A. Dantan,et al.  Cavity electromagnetically induced transparency and optical switching with ion Coulomb crystals , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[12]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.

[13]  Alan G. R. Evans,et al.  Realisation of very high voltage electrode-nozzle systems for MEMS , 2004 .

[14]  Isaac L. Chuang,et al.  Laser-induced charging of microfabricated ion traps , 2011, 1108.0092.

[15]  K. Brown,et al.  100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. , 2012, Physical review letters.

[16]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[17]  D. Payan,et al.  ESDs on Solar Cells—Degradation, Modeling, and Importance of the Test Setup , 2008, IEEE Transactions on Plasma Science.

[18]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[19]  M. Martinez-Sanchez,et al.  A Microfabricated Planar Electrospray Array Ionic Liquid Ion Source With Integrated Extractor , 2009, Journal of Microelectromechanical Systems.

[20]  A. Avdienko,et al.  Flashover in a vacuum , 1977 .

[21]  Tobias Schaetz,et al.  Experimental quantum simulations of many-body physics with trapped ions , 2012, Reports on progress in physics. Physical Society.

[22]  R. Hackam,et al.  Surface flashover of solid dielectric in vacuum , 1982 .

[23]  H. C. Miller Surface flashover of insulators , 1988 .

[24]  D M Lucas,et al.  Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning , 2011, 1110.1486.

[25]  Isaac L. Chuang,et al.  Surface-electrode ion trap with integrated light source , 2011, 1103.5256.

[26]  V. Inguimbert,et al.  Parametric Study of a Physical Flashover Simulator , 2012, IEEE Transactions on Plasma Science.

[27]  A. Neuber,et al.  Electric current in dc surface flashover in vacuum , 1999 .

[28]  Herbert Shea,et al.  Integrated out-of-plane nanoelectrospray thruster arrays for spacecraft propulsion , 2009 .

[29]  F. Boulay,et al.  Electrostatic Discharge and Secondary Arcing on Solar Array—Flashover Effect on Arc Occurrence , 2008, IEEE Transactions on Plasma Science.

[30]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[31]  C. Monroe,et al.  Onset of a quantum phase transition with a trapped ion quantum simulator. , 2011, Nature communications.

[32]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.