A 65-nm SOTB implementation of a physically unclonable function and its performance improvement by body bias control

This study explores the feasibility of using silicon-on-thin-buried oxide (SOTB) devices for physically unclonable functions (PUFs) and the effect of body biasing of the SOTB on the performance of a PUF. The low variability of the SOTB is desirable for ultra-low-power operation of the circuit, whereas it can cause performance decrease in a PUF, because a PUF generates a unique chip ID by exploiting the device variability. This paper reports the feasibility of using a reduced-variability SOTB for a PUF for the first time. We fabricated arbiter PUFs in the 65-nm SOTB process and measured the PUF responses for core voltages in the range of 0.4–0.8 V and body bias in the range of −0.5–0.5 V. We demonstrated that the SOTB can be used to implement a PUF successfully, and its performance can be improved by adjusting the body bias of the SOTB.

[1]  Stephen A. Benton,et al.  Physical one-way functions , 2001 .

[2]  Takayasu Sakurai Designing ultra-low voltage logic , 2011, IEEE/ACM International Symposium on Low Power Electronics and Design.

[3]  Ingrid Verbauwhede,et al.  Experimental evaluation of Physically Unclonable Functions in 65 nm CMOS , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).

[4]  Daniel E. Holcomb,et al.  Low-power sub-threshold design of secure physical unclonable functions , 2010, 2010 ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED).

[5]  Srinivas Devadas,et al.  Silicon physical random functions , 2002, CCS '02.

[6]  N. Sugii,et al.  Local $V_{\rm th}$ Variability and Scalability in Silicon-on-Thin-BOX (SOTB) CMOS With Small Random-Dopant Fluctuation , 2010, IEEE Transactions on Electron Devices.

[7]  Marten van Dijk,et al.  A technique to build a secret key in integrated circuits for identification and authentication applications , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[8]  Jorge Guajardo,et al.  FPGA Intrinsic PUFs and Their Use for IP Protection , 2007, CHES.