Gelfand numbers of operators with values in a Hilbert space

SummaryIn the paper we prove two inequalities involving Gelfand numbers of operators with values in a Hilbert space. The first inequality is a Rademacher version of the main result in [Pa-To-1] which relates the Gelfand numbers of an operator from a Banach spaceX intol2n with a certain Rademacher average for the dual operator. The second inequality states that the Gelfand numbers of an operatoru froml1N into a Hilbert space satisfy the inequality $$k^{1/2} c_k (u) \leqq C\parallel u\parallel (\log (1 + N/k))^{1/2}$$ whereC is a universal constant. Several applications of these inequalities in the geometry of Banach spaces are given.

[1]  J. Lindenstrauss,et al.  Absolutely summing operators in Lp spaces and their applications , 1968 .

[2]  T. Figiel On the moduli of convexity and smoothness , 1976 .

[3]  G. Pisier,et al.  Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .

[4]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[5]  D. R. Lewis Finite dimensional subspaces of $L_{p}$ , 1978 .

[6]  Large subspaces ofl∞n and estimates of the gordon-lewis constantand estimates of the gordon-lewis constant , 1980 .

[7]  Nicole Tomczak-Jaegermann,et al.  On nearly euclidean decomposition for some classes of Banach spaces , 1980 .

[8]  G. Pisier,et al.  Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert , 1980 .

[9]  V. Milman,et al.  The distance between certainn-dimensional Banach spaces , 1981 .

[10]  B. Carl Entropy numbers, s-numbers, and eigenvalue problems , 1981 .

[11]  J. Elton Sign-embeddings of ⁿ₁ , 1983 .

[12]  S. Szarek The finite dimensional basis problem with an appendix on nets of Grassmann manifolds , 1983 .

[13]  C. Schütt Entropy numbers of diagonal operators between symmetric Banach spaces , 1984 .

[14]  E. Giné,et al.  Some Limit Theorems for Empirical Processes , 1984 .

[15]  B. Carl Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces , 1985 .

[16]  Spaces with large projection constants , 1985 .

[17]  J. Bourgain Subspaces of L N ∞ , arithmetical diameter and sidon sets , 1985 .

[18]  V. Milman,et al.  Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space , 1985 .

[19]  V. Milman,et al.  Random subspaces of proportional dimension of finite dimensional normed spaces: Approach through the isoperimetric inequality , 1985 .

[20]  G. Pisier Factorization of Linear Operators and Geometry of Banach Spaces , 1986 .

[21]  A. Pajor,et al.  Subspaces of small codimension of finite-dimensional Banach spaces , 1986 .

[22]  Gilles Pisier,et al.  Banach spaces with a weak cotype 2 property , 1986 .

[23]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[24]  E. Giné,et al.  Lectures on the central limit theorem for empirical processes , 1986 .

[25]  Gaussian Processes and Mixed Volumes , 1987 .

[26]  Dualité des nombres d'entropie pour des opérateurs à valeurs dans un espace de Hilbert , 1987 .

[27]  V. Milman,et al.  New volume ratio properties for convex symmetric bodies in ℝn , 1987 .

[28]  M. Talagrand Donsker classes of sets , 1988 .

[29]  B. Carl,et al.  s-Numbers of integral operators with Hölder continuous kernels over metric compacta , 1988 .

[30]  G. Pisier Weak Hilbert Spaces , 1988 .

[31]  Alain Pajor,et al.  Volume Ratio and Other s-Numbers of Operators Related to Local Properties of Banach Spaces , 1989 .

[32]  J. Lindenstrauss,et al.  Approximation of zonoids by zonotopes , 1989 .

[33]  Alain Pajor,et al.  Gelfand Numbers and Euclidean Sections of Large Dimensions , 1990 .