In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography

The corneo-scleral limbus contains several biological components, which are important constituents for understanding, diagnosing and managing several ocular pathologies, such as glaucoma and corneal abnormalities. An anterior segment optical coherence tomography (AS-OCT) system integrated with optical microangiography (OMAG) is used in this study to non-invasively visualize the three-dimensional microstructural and microvascular properties of the limbal region. Advantages include first the ability to correct optical distortion of microstructural images enabling quantification of relationships in the anterior chamber angle. Second, microvascular images enable the visualization of the microcirculation in the limbal area without the use of exogenous contrast agents. Third, by combining the microstructural and microvascular information, the aqueous outflow pathway can be identified. The proposed AS-OCT can serve as a useful tool for ophthalmological research to determine normal and pathologic changes in the outflow system. As a clinical tool it has the potential to detect early aqueous outflow system abnormalities that lead to the pressure elevation in glaucoma. Recent surgical innovations and their implementations also rely on an assessment of outflow system structure and function, which can be revealed by AS-OCT.

[1]  Lindsey S. Folio,et al.  3D visualization of aqueous humor outflow structures in-situ in humans. , 2011, Experimental eye research.

[2]  E. Papas The limbal vasculature. , 2003, Contact lens & anterior eye : the journal of the British Contact Lens Association.

[3]  Marinko Sarunic,et al.  Detailed visualization of the anterior segment using fourier-domain optical coherence tomography. , 2008, Archives of ophthalmology.

[4]  Carroll A.B. Webers,et al.  Value of optical coherence tomography for anterior segment surgery , 2010, Journal of cataract and refractive surgery.

[5]  L. Pablo,et al.  Fluorophotometric study of the effect of the glaukos trabecular microbypass stent on aqueous humor dynamics. , 2010, Investigative ophthalmology & visual science.

[6]  Tin Aung,et al.  Utility of Bleb Imaging With Anterior Segment Optical Coherence Tomography in Clinical Decision-making After Trabeculectomy , 2009, Journal of glaucoma.

[7]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[8]  E A Swanson,et al.  Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. , 1994, Archives of ophthalmology.

[9]  Kostadinka Bizheva,et al.  In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT , 2011, Biomedical optics express.

[10]  Hiroshi Ishikawa,et al.  Identification and assessment of Schlemm's canal by spectral-domain optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[11]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[12]  Changhuei Yang,et al.  Ex vivo optical coherence tomography imaging of collector channels with a scanning endoscopic probe. , 2011, Investigative ophthalmology & visual science.

[13]  R. Stegmann,et al.  Canaloplasty for primary open-angle glaucoma: long-term outcome , 2010, British Journal of Ophthalmology.

[14]  T. Sherwin,et al.  Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus. , 2006, Investigative ophthalmology & visual science.

[15]  Ruikang K. Wang,et al.  Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength. , 2007, Optics express.

[16]  Ismini Charalambous,et al.  Correction of distortions in optical coherence tomography imaging of the eye. , 2004, Physics in medicine and biology.

[17]  B. Lorenz,et al.  Ocular Phenotype in 3 Young Siblings With a Homozygous KCNV2-Mutation Followed for 14 Years , 2007 .

[18]  Christopher Kai-shun Leung,et al.  Analysis of bleb morphology after trabeculectomy with Visante anterior segment optical coherence tomography , 2006, British Journal of Ophthalmology.

[19]  R Ritch,et al.  Ultrasound biomicroscopy of the anterior segment. , 1996, Journal of the American Optometric Association.

[20]  H. Dua,et al.  Limbal stem cells of the corneal epithelium. , 2000, Survey of ophthalmology.

[21]  Piero Barboni,et al.  Filtering blebs imaging by optical coherence tomography , 2005, Clinical & experimental ophthalmology.

[22]  W. Townsend The limbal palisades of Vogt. , 1991, Transactions of the American Ophthalmological Society.

[23]  R. Stegmann,et al.  Clinical evaluation of the aqueous outflow system in primary open-angle glaucoma for canaloplasty. , 2010, Investigative ophthalmology & visual science.

[24]  Ruikang K. Wang,et al.  Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate. , 2011, Journal of biomedical optics.

[25]  Chia-Yang Liu,et al.  Monoallelic expression of Krt12 gene during corneal-type epithelium differentiation of limbal stem cells. , 2010, Investigative ophthalmology & visual science.

[26]  S. Marcos,et al.  Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging. , 2010, Optics express.

[27]  J. Izatt,et al.  Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle. , 2002, Optics express.

[28]  R. Birngruber,et al.  Filtering Bleb Evaluation with Slit-Lamp–Adapted 1310-nm Optical Coherence Tomography , 2006, Current eye research.

[29]  M. Goldberg,et al.  Limbal palisades of Vogt. , 1982, Transactions of the American Ophthalmological Society.

[30]  M. Johnstone,et al.  Pulsatile flow into the aqueous veins: Manifestations in normal and glaucomatous eyes , 2011, Experimental eye research.

[31]  Hogan,et al.  Histology of the human eye;: An atlas and textbook , 1971 .

[32]  R. Weinreb,et al.  Anterior chamber angle imaging with optical coherence tomography , 2011, Eye.

[33]  Sander R. Dubovy,et al.  Topographic thickness of Bowman's layer determined by ultra-high resolution spectral domain-optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[34]  Tin Aung,et al.  Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography. , 2007, Investigative ophthalmology & visual science.

[35]  J. Izatt,et al.  Real-time optical coherence tomography of the anterior segment at 1310 nm. , 2001, Archives of ophthalmology.

[36]  Shuichi Makita,et al.  Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography. , 2010, Journal of biomedical optics.

[37]  A. Crichton,et al.  The use of ultrasound biomicroscopy following trabeculectomy. , 1996, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[38]  K. Sugiyama,et al.  In Vivo Corneal Confocal Microscopic Findings of Palisades of Vogt and Its Underlying Limbal Stroma , 2005, Cornea.