On Intrinsic Bounds in the Nullstellensatz

Abstract. Let k be a field and  f1, . . . ,  fs be non constant polynomials in k[X1, . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence  f1, . . . ,  fs: the geometric degree of the system. With this notion we can show the following effective Nullstellensatz: if δ denotes the geometric degree of the trivial system  f1, . . . ,  fs and d :=maxj deg( fj), then there exist polynomials p1, . . . , ps∈k[X1, . . . , Xn] such that 1=∑j pj fj and deg pj  fj≦3n2δd. Since the number δ is always bounded by (d+1)n-1, one deduces a classical single exponential upper bound in terms of d and n, but in some cases our new bound improves the known ones.

[1]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[2]  Teresa Krick,et al.  A computational method for diophantine approximation , 1996 .

[3]  F. Amoroso,et al.  On a conjecture of C. Berenstein and A. Yger , 1996 .

[4]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[5]  Jean-Paul Cardinal,et al.  Dualité et algorithmes itératifs pour la résolution de systèmes polynomiaux , 1993 .

[6]  Alicia Dickenstein,et al.  An effective residual criterion for the membership problem in C[z1,…,zn] , 1991 .

[7]  Bernard Shiffman,et al.  Degree bounds for the division problem in polynomial ideals. , 1989 .

[8]  Marie-Françoise Roy,et al.  Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .

[9]  Leandro Caniglia,et al.  Local Membership Problems for Polynomial Ideals , 1991 .

[10]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[11]  Patrice Philippon,et al.  Dénominateurs dans le théorème des zéros de Hilbert , 1991 .

[12]  André Galligo,et al.  Some New Effectivity Bounds in Computational Geometry , 1988, AAECC.

[13]  Bernard Teissier,et al.  Résultats récents d'algèbre commutative effective , 1990 .

[14]  C. Berenstein,et al.  Recent improvements in the complexity of the effective Nullstellensatz , 1991 .

[15]  Wolmer V. Vasconcelos,et al.  Jacobian Matrices and Constructions in Algebra , 1991, AAECC.

[16]  Noaï Fitchas,et al.  Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen‐Suslin) pour le Calcul Formel , 1990 .

[17]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[18]  Carlos A. Berenstein,et al.  Bounds for the degrees in the division problem. , 1990 .