Optimization of a higher-order sandwich composite beam under uncertainties

[1]  Wanying Yun,et al.  Active sparse polynomial chaos expansion for system reliability analysis , 2020, Reliab. Eng. Syst. Saf..

[2]  R. Ganguli,et al.  Uncertainty analysis of higher-order sandwich beam using a hybrid stochastic time-domain spectral element method , 2020 .

[3]  R. Ganguli,et al.  Stochastic strain and stress computation of a higher-order sandwich beam using hybrid stochastic time domain spectral element method , 2020, Mechanics of Advanced Materials and Structures.

[4]  Xin Ruan,et al.  Robust design optimization of variable angle tow composite plates for maximum buckling load in the presence of uncertainties , 2019, Composite Structures.

[5]  Peng Hao,et al.  An augmented step size adjustment method for the performance measure approach: Toward general structural reliability-based design optimization , 2019, Structural Safety.

[6]  Lei Wang,et al.  Optimal Maintenance Design-Oriented Nonprobabilistic Reliability Methodology for Existing Structures Under Static and Dynamic Mixed Uncertainties , 2019, IEEE Transactions on Reliability.

[7]  Yaowen Yang,et al.  Structural design optimization based on hybrid time-variant reliability measure under non-probabilistic convex uncertainties , 2019, Applied Mathematical Modelling.

[8]  Peng Hao,et al.  A new reliability-based design optimization framework using isogeometric analysis , 2019, Computer Methods in Applied Mechanics and Engineering.

[9]  Drahomír Novák,et al.  Polynomial chaos expansion for surrogate modelling: Theory and software , 2018, Beton- und Stahlbetonbau.

[10]  Gonçalo Neves Carneiro,et al.  A RBRDO approach based on structural robustness and imposed reliability level , 2018 .

[11]  Wei Li,et al.  Multidisciplinary robust design optimization based on time-varying sensitivity analysis , 2018 .

[12]  M. Yildiz,et al.  Efficient strategies for reliability-based design optimization of variable stiffness composite structures , 2018 .

[13]  Xiongming Lai,et al.  Nondeterministic optimization of tapered sandwich column for crashworthiness , 2018 .

[14]  Luísa N. Hoffbauer,et al.  Optimal design of composite shells based on minimum weight and maximum feasibility robustness , 2017 .

[15]  Hao Wu,et al.  A novel non-probabilistic reliability-based design optimization algorithm using enhanced chaos control method , 2017 .

[16]  Khader M. Hamdia,et al.  Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions , 2017, International Journal of Fracture.

[17]  Silvana M. B. Afonso,et al.  An efficient procedure for structural reliability-based robust design optimization , 2016 .

[18]  Alireza Fathi,et al.  Optimal design of a honeycomb core composite sandwich panel using evolutionary optimization algorithms , 2016 .

[19]  Mehdi Kalantari,et al.  Multi-objective robust optimisation of unidirectional carbon/glass fibre reinforced hybrid composites under flexural loading , 2016 .

[20]  Santiago Hernández,et al.  Efficient methodologies for reliability-based design optimization of composite panels , 2016, Adv. Eng. Softw..

[21]  S. Hernández,et al.  A multi-objective reliability-based optimization of the crashworthiness of a metallic-GFRP impact absorber using hybrid approximations , 2015 .

[22]  Erik Lund,et al.  Robust buckling optimization of laminated composite structures using discrete material optimization considering “worst” shape imperfections , 2015 .

[23]  Qing Li,et al.  Multiobjective robust optimization for crashworthiness design of foam filled thin-walled structures with random and interval uncertainties , 2015 .

[24]  Joe Wiart,et al.  A new surrogate modeling technique combining Kriging and polynomial chaos expansions - Application to uncertainty analysis in computational dosimetry , 2015, J. Comput. Phys..

[25]  A. Gandomi,et al.  A novel improved accelerated particle swarm optimization algorithm for global numerical optimization , 2014 .

[26]  Ashley P. Thrall,et al.  Honeycomb core sandwich panels for origami-inspired deployable shelters: Multi-objective optimization for minimum weight and maximum energy efficiency , 2014 .

[27]  C. Shul,et al.  Advanced probabilistic design and reliability-based design optimization for composite sandwich structure , 2014 .

[28]  Carlos Alberto Conceição António,et al.  Uncertainty assessment approach for composite structures based on global sensitivity indices , 2013 .

[29]  Xin-She Yang,et al.  Chaos-enhanced accelerated particle swarm optimization , 2013, Commun. Nonlinear Sci. Numer. Simul..

[30]  Sankaran Mahadevan,et al.  Efficient Global Surrogate Modeling for Reliability-Based Design Optimization , 2013 .

[31]  Guillermo Rus,et al.  Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms , 2012 .

[32]  George A. Kardomateas,et al.  Wrinkling of sandwich wide panels/beams based on the extended high-order sandwich panel theory: formulation, comparison with elasticity and experiments , 2012 .

[33]  Yeoshua Frostig,et al.  Analysis of Sandwich Beams With a Compliant Core and With In-Plane Rigidity—Extended High-Order Sandwich Panel Theory Versus Elasticity , 2012 .

[34]  Sankaran Mahadevan,et al.  Efficient surrogate models for reliability analysis of systems with multiple failure modes , 2011, Reliab. Eng. Syst. Saf..

[35]  Michel van Tooren,et al.  Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles , 2011 .

[36]  Simon Fong,et al.  Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications , 2011, NDT.

[37]  Didier Lemosse,et al.  An approach for the reliability based design optimization of laminated composites , 2011 .

[38]  F.-X. Irisarri,et al.  Computational strategy for multiobjective optimization of composite stiffened panels , 2011 .

[39]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .

[40]  Hee Keun Cho,et al.  Maximizing structure performances of a sandwich panel with hybrid composite skins using particle swarm optimization algorithm , 2009 .

[41]  K. Shivakumar,et al.  Water immersion effect on swelling and compression properties of Eco-Core, PVC foam and balsa wood , 2009 .

[42]  Carlos Alberto Conceição António,et al.  An approach for reliability-based robust design optimisation of angle-ply composites , 2009 .

[43]  Jianqiao Chen,et al.  Probabilistic optimal design of laminates using improved particle swarm optimization , 2008 .

[44]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[45]  Michael A. Sprague,et al.  Legendre spectral finite elements for structural dynamics analysis , 2007 .

[46]  Marek Krawczuk,et al.  Wave propagation modelling in 1D structures using spectral finite elements , 2007 .

[47]  I. Y. Kim,et al.  Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .

[48]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[49]  Jongman Kim,et al.  Optimization of Sandwich Beams for Concentrated Loads , 2002 .

[50]  Ronald C. Averill,et al.  First-order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels , 2000 .

[51]  S. Oskooei,et al.  Higher-Order Finite Element for Sandwich Plates , 2000 .

[52]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[53]  Yeoshua Frostig,et al.  High‐Order Theory for Sandwich‐Beam Behavior with Transversely Flexible Core , 1992 .

[54]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[55]  J. Boyd Chebyshev and Fourier Spectral Methods , 1989 .

[56]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .