Gene Descent, Duplication, and Horizontal Transfer in the Evolution of Glutamyl- and Glutaminyl-tRNA Synthetases

[1]  W. Doolittle,et al.  Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[3]  H. Becker,et al.  Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Söll,et al.  Glutamyl-tRNA(Gln) amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Siatecka,et al.  Modular evolution of the Glx-tRNA synthetase family--rooting of the evolutionary tree between the bacteria and archaea/eukarya branches. , 1998, European journal of biochemistry.

[6]  K. Novak The complete genome sequence… , 1998, Nature Medicine.

[7]  C R Woese,et al.  Erratum: The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1998, Nature.

[8]  Jianzhi Zhang,et al.  A bacterial antibiotic resistance gene with eukaryotic origins , 1998, Current Biology.

[9]  R. Huber,et al.  The complete genome of the hyperthermophilic bacterium Aquifex aeolicus , 1998, Nature.

[10]  James R. Brown,et al.  Archaea and the prokaryote-to-eukaryote transition. , 1997, Microbiology and molecular biology reviews : MMBR.

[11]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[12]  C R Woese,et al.  A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. , 1997, Science.

[13]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[14]  D. Söll,et al.  Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[16]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.

[17]  A. Schneider,et al.  Leishmania tarentolae contains distinct cytosolic and mitochondrial glutaminyl-tRNA synthetase activities. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  W. Doolittle,et al.  Archaea and the Origin(s) of DNA Replication Proteins , 1997, Cell.

[19]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[20]  Dieter Söll,et al.  tRNA-dependent asparagine formation , 1996, Nature.

[21]  Roderic D. M. Page,et al.  TreeView: an application to display phylogenetic trees on personal computers , 1996, Comput. Appl. Biosci..

[22]  J D Palmer,et al.  The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  L. Lacoste,et al.  Widespread Use of the Glu-tRNAGln Transamidation Pathway among Bacteria , 1996, The Journal of Biological Chemistry.

[24]  A. Hurlburt,et al.  Identification of the gltX gene encoding glutamyl-tRNA synthetase from Methanobacterium thermoautotrophicum. , 1996, Biochimica et biophysica acta.

[25]  R. Overbeek,et al.  The winds of (evolutionary) change: breathing new life into microbiology. , 1996, Journal of bacteriology.

[26]  W. Doolittle,et al.  Archaea: narrowing the gap between prokaryotes and eukaryotes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Erratum: Architectures of Class-Defining and Specific Domains of Glutamyl-tRNA Synthetase , 1995, Science.

[28]  W. Doolittle,et al.  Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[30]  W. Doolittle,et al.  Evolution: Archaea and eukaryotes versus bacteria? , 1994, Current Biology.

[31]  M. Mirande,et al.  Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Francine B. Perler,et al.  In vitro protein splicing of purified precursor and the identification of a branched intermediate , 1993, Cell.

[33]  T. Cavalier-smith,et al.  Kingdom protozoa and its 18 phyla. , 1993, Microbiological reviews.

[34]  J. Ito,et al.  Compilation, alignment, and phylogenetic relationships of DNA polymerases. , 1993, Nucleic acids research.

[35]  H. Klenk,et al.  DNA-dependent RNA polymerases as phylogenetic marker molecules , 1993 .

[36]  J A Lake,et al.  Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. , 1992, Science.

[37]  O. Nureki,et al.  Glutamyl-tRNA synthetase from Thermus thermophilus HB8. Molecular cloning of the gltX gene and crystallization of the overproduced protein. , 1992, European journal of biochemistry.

[38]  T. Henkin,et al.  Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes , 1992, Journal of bacteriology.

[39]  John M Logsdon,et al.  The recent origins of introns , 1992, Current Biology.

[40]  R. Doolittle,et al.  Evolution and relatedness in two aminoacyl-tRNA synthetase families. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D. Watson,et al.  Glutamyl-tRNA synthetases of Bacillus subtilis 168T and of Bacillus stearothermophilus. Cloning and sequencing of the gltX genes and comparison with other aminoacyl-tRNA synthetases. , 1990, The Journal of biological chemistry.

[42]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[43]  Olivier Poch,et al.  Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs , 1990, Nature.

[44]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Steitz,et al.  Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. , 1989, Science.

[47]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R A Garrett,et al.  Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Mitchell L. Sogin,et al.  Evolution of Eukaryotic Microorganisms and Their Small Subunit Ribosomal RNAs , 1989 .

[50]  D. Söll,et al.  Protein biosynthesis in organelles requires misaminoacylation of tRNA , 1988, Nature.

[51]  James A. Lake,et al.  Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences , 1988, Nature.

[52]  C. Woese Bacterial evolution , 1987, Microbiological reviews.

[53]  Département de Biochimie,et al.  A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro , 1986, Journal of bacteriology.

[54]  R. Gupta Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. , 1984, The Journal of biological chemistry.

[55]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[57]  B. White,et al.  Further codon assignments in an extremely halophilic bacterium using a cell-free protein-synthesizing system and a ribosomal binding assay. , 1972, Canadian Journal of Biochemistry.

[58]  R. Lazzarini,et al.  SEPARATION OF SPECIFIC GLUTAMATE- AND GLUTAMINE-ACTIVATING ENZYMES FROM ESCHERICHIA COLI. , 1964, Biochemistry.

[59]  R. Breton,et al.  Glutamyl-tRNA Synthetases of Bacillus subtilis 168 T and of Bacillus stearo thermophilus , 2001 .

[60]  G. McFadden,et al.  Origins of microsporidia. , 1998, Trends in microbiology.

[61]  F. Robb,et al.  Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. , 1998, DNA research : an international journal for rapid publication of reports on genes and genomes.

[62]  C. Carter,et al.  Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. , 1993, Annual review of biochemistry.

[63]  A. Köpke,et al.  Chapter 14 The structure, function and evolution of archaeal ribosomes , 1993 .

[64]  A. Danchin,et al.  A gene encoding a tyrosine tRNA synthetase is located near sacS in Bacillus subtilis. , 1991, DNA sequence : the journal of DNA sequencing and mapping.

[65]  W. Fitch,et al.  The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. , 1987, Cold Spring Harbor symposia on quantitative biology.

[66]  M. O. Dayhoff,et al.  22 A Model of Evolutionary Change in Proteins , 1978 .

[67]  W. Shive,et al.  GLUTAMYL AND GLUTAMINYL RIBONUCLEIC ACID SYNTHETASES OF ESCHERICHIA COLI W. SEPARATION, PROPERTIES, AND STIMULATION OF ADENOSINE TRIPHOSPHATE-PYROPHOSPHATE EXCHANGE BY ACCEPTOR RIBONUCLEIC ACID. , 1965, The Journal of biological chemistry.