Nonequilibrium Green's Function Treatment of Phonon Scattering in Carbon-Nanotube Transistors

We present a detailed treatment of dissipative quantum transport in carbon-nanotube field-effect transistors (CNT-FETs) using the nonequilibrium Green's function formalism. The effect of phonon scattering on the device characteristics of CNT-FETs is explored using extensive numerical simulation. Both intra- and intervalley scattering mediated by acoustic (AP), optical (OP), and radial-breathing-mode (RBM) phonons are treated. Realistic phonon dispersion calculations are performed using force- constant methods, and electron-phonon coupling is determined through microscopic theory. Specific simulation results are presented for (16,0), (19,0), and (22,0) zigzag CNTFETs, which are in the experimentally useful diameter range. We find that the effect of phonon scattering on device performance has a distinct bias dependence. Up to moderate gate biases, the influence of high-energy OP scattering is suppressed, and the device current is reduced due to elastic backscattering by AP and low-energy RBM phonons. At large gate biases, the current degradation is mainly due to high-energy OP scattering. The influence of both AP and high-energy OP scattering is reduced for larger diameter tubes. The effect of RBM mode, however, is nearly independent of the diameter for the tubes studied here.

[1]  J. Tersoff Schottky Barrier Heights and the Continuum of Gap States , 1984 .

[2]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[3]  Supriyo Datta,et al.  A simple kinetic equation for steady-state quantum transport , 1990 .

[4]  E. Anda,et al.  The role of inelastic scattering in resonant tunnelling heterostructures , 1991 .

[5]  Datta,et al.  Rate equations from the Keldysh formalism applied to the phonon peak in resonant-tunneling diodes. , 1993, Physical review. B, Condensed matter.

[6]  Gerhard Klimeck,et al.  Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .

[7]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[8]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[9]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[10]  Georg Kresse,et al.  First-principles calculations of the radial breathing mode of single-wall carbon nanotubes , 1998 .

[11]  A. Rubio,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1999 .

[12]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[13]  W. Gander,et al.  Adaptive Quadrature—Revisited , 2000 .

[14]  H. Dai,et al.  Quantum interference and ballistic transmission in nanotube electron waveguides. , 2001, Physical review letters.

[15]  M. Anantram,et al.  Role of scattering in nanotransistors , 2002, cond-mat/0211069.

[16]  Mark S. Lundstrom Fundamentals of Carrier Transport, 2nd edn , 2002 .

[17]  M. Anantram,et al.  Two-dimensional quantum mechanical modeling of nanotransistors , 2001, cond-mat/0111290.

[18]  Tsuneya Ando,et al.  Phonons and Electron-Phonon Scattering in Carbon Nanotubes , 2002 .

[19]  S. Datta,et al.  Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches , 2002 .

[20]  Gerald D. Mahan,et al.  Electron-optical phonon interaction in carbon nanotubes , 2003 .

[21]  Georg Kresse,et al.  Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes , 2003 .

[22]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[23]  N. Goldsman,et al.  Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes , 2003 .

[24]  Mark S. Lundstrom,et al.  Toward Multiscale Modeling of Carbon Nanotube Transistors , 2004 .

[25]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[26]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[27]  The strength of the radial-breathing mode in single-walled carbon nanotubes , 2004, cond-mat/0408436.

[28]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[29]  M. Lundstrom,et al.  Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays , 2004, cond-mat/0406494.

[30]  A. Carlo,et al.  Atomistic Simulation of the Electronic Transport in Organic Nanostructures: Electron-Phonon and Electron-Electron Interactions , 2004, 2004 Abstracts 10th International Workshop on Computational Electronics.

[31]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[32]  Jie Jiang,et al.  Electron-phonon matrix elements in single-wall carbon nanotubes , 2005 .

[33]  P. Avouris,et al.  High-performance dual-gate carbon nanotube FETs with 40-nm gate length , 2005, IEEE Electron Device Letters.

[34]  Mark S. Lundstrom,et al.  Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors , 2005, cond-mat/0510122.

[35]  A. Verma,et al.  Ensemble Monte Carlo transport simulations for semiconducting carbon nanotubes , 2005 .

[36]  Phaedon Avouris,et al.  Electron-phonon interaction and transport in semiconducting carbon nanotubes. , 2005, Physical review letters.

[37]  S. Goupalov Continuum model for long-wavelength phonons in two-dimensional graphite and carbon nanotubes , 2005 .

[38]  齋藤 理一郎 Electron-phonon matrix elements in single-wall carbon nanotubes , 2005 .

[39]  M. Paulsson,et al.  Modeling inelastic phonon scattering in atomic- and molecular-wire junctions , 2005, cond-mat/0505473.

[40]  Jing Guo,et al.  A quantum-mechanical treatment of phonon scattering in carbon nanotube transistors , 2005 .

[41]  Ji-Yong Park,et al.  Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. , 2005, Physical review letters.

[42]  A. Verma,et al.  Effects of radial breathing mode phonons on charge transport in semiconducting zigzag carbon nanotubes , 2005 .

[43]  M. Lundstrom,et al.  Role of phonon scattering in carbon nanotube field-effect transistors , 2005 .

[44]  N. Goldsman,et al.  Low-field semiclassical carrier transport in semiconducting carbon nanotubes , 2005 .

[45]  M. Anantram,et al.  Effect of scattering and contacts on current and electrostatics in carbon nanotubes , 2005, cond-mat/0503769.

[46]  S. Galdin-Retailleau,et al.  Electron-phonon scattering and ballistic behavior in semiconducting carbon nanotubes , 2005 .

[47]  M. Lundstrom,et al.  Computational study of carbon nanotube p-i-n tunnel FETs , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[48]  M. Lundstrom,et al.  Dependence of DC characteristics of CNT MOSFETs on bandstructure models , 2006, IEEE Transactions on Nanotechnology.

[49]  Modeling of quantum transport in nano-scale MOSFET devices , 2006 .

[50]  Siegfried Selberherr,et al.  Rigorous modeling of carbon nanotube transistors , 2006 .

[51]  Mobility in semiconducting carbon nanotubes at finite carrier density. , 2005, Nano letters.

[52]  Philippe Lambin,et al.  Intraband electron-phonon scattering in single-walled carbon nanotubes , 2006 .

[53]  H. Dai,et al.  Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction , 2006, Science.

[54]  M. P. Anantram,et al.  Ballisticity of nanotube field-effect transistors: Role of phonon energy and gate bias , 2005, cond-mat/0511723.

[55]  M. Lundstrom,et al.  Simulation of Carbon nanotube FETs including hot-phonon and self-heating effects , 2006, 2006 International Electron Devices Meeting.

[56]  Y. J. Park,et al.  A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions , 2006 .

[57]  M. P. Anantram,et al.  Physics of carbon nanotube electronic devices , 2006 .

[58]  Z. Ren Nanoscale MOSFETS: Physics, Simulation and Design , 2006 .

[59]  S. Datta,et al.  Towards Multi-Scale Modeling of Carbon Nanotube Transistors , 2003, cond-mat/0312551.

[60]  Mark S. Lundstrom,et al.  Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon-assisted tunneling. , 2007, Nano letters.

[61]  M. P. Anantram,et al.  Modeling of Nanoscale Devices , 2008, Proceedings of the IEEE.