Quantum walk algorithm for element distinctness

We use quantum walks to construct a new quantum algorithm for element distinctness and its generalization. For element distinctness (the problem of finding two equal items among N given items), we get an O(N/sup 2/3/) query quantum algorithm. This improves the previous O(N/sup 3/4/) quantum algorithm of Buhrman et al. and matches the lower bound by Shi. We also give an O(N/sup k/(k+1)/) query quantum algorithm for the generalization of element distinctness in which we have to find k equal items among N items.

[1]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[2]  Andris Ambainis,et al.  Quantum lower bounds for collision and element distinctness with small range , 2003 .

[3]  Julia Kempe,et al.  Quantum Random Walks Hit Exponentially Faster , 2002, ArXiv.

[4]  Frédéric Magniez,et al.  An $O(n^{1.3})$ Quantum Algorithm for the Triangle Problem , 2003 .

[5]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[6]  Samuel Kutin A quantum lower bound for the collision problem , 2003 .

[7]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[8]  Friedhelm Meyer auf der Heide,et al.  A lower bound for randomized algebraic decision trees , 1996, STOC '96.

[9]  Andrew M. Childs,et al.  Spatial search and the Dirac equation , 2004 .

[10]  Paul Benioff Space Searches with a Quantum Robot , 2000 .

[11]  Andrew M. Childs,et al.  Quantum algorithms for subset finding , 2005, Quantum Inf. Comput..

[12]  AaronsonScott,et al.  Quantum lower bounds for the collision and the element distinctness problems , 2004 .

[13]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[14]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[15]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[16]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[17]  Aravind Srinivasan,et al.  Randomized Distributed Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds , 1997, SIAM J. Comput..

[18]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[19]  Andris Ambainis Quantum query algorithms and lower bounds , 2001, FotFS.

[20]  Michael E. Saks,et al.  Time-space trade-off lower bounds for randomized computation of decision problems , 2003, JACM.

[21]  PughWilliam Skip lists: a probabilistic alternative to balanced trees , 1990 .

[22]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[23]  Harald Niederreiter,et al.  Probability and computing: randomized algorithms and probabilistic analysis , 2006, Math. Comput..

[24]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[25]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[26]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[27]  Michael E. Saks,et al.  Time-Space Tradeoffs for Branching Programs , 2001, J. Comput. Syst. Sci..

[28]  Andris Ambainis,et al.  Coins make quantum walks faster , 2004, SODA '05.

[29]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[30]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[31]  Scott Aaronson,et al.  Quantum lower bound for the collision problem , 2001, STOC '02.

[32]  Scott Aaronson,et al.  Quantum lower bounds for the collision and the element distinctness problems , 2004, JACM.

[33]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[34]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[35]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[36]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[37]  William Pugh,et al.  Skip Lists: A Probabilistic Alternative to Balanced Trees , 1989, WADS.

[38]  Frédéric Magniez,et al.  Quantum Algorithms for Element Distinctness , 2005, SIAM J. Comput..

[39]  BeamePaul,et al.  Time-space trade-off lower bounds for randomized computation of decision problems , 2003 .

[40]  Edward Farhi,et al.  An Example of the Difference Between Quantum and Classical Random Walks , 2002, Quantum Inf. Process..

[41]  Andris Ambainis,et al.  Quantum lower bounds by quantum arguments , 2000, STOC '00.

[42]  Andrew Chi-Chih Yao Near-Optimal Time-Space Tradeoff for Element Distinctness , 1994, SIAM J. Comput..

[43]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[44]  Gilles Brassard,et al.  Quantum cryptanalysis of hash and claw-free functions , 1997, SIGA.